]> Dogcows Code - chaz/yoink/blobdiff - src/Moof/stlplus/ntree.tpp
initial working frustum culling implementation
[chaz/yoink] / src / Moof / stlplus / ntree.tpp
diff --git a/src/Moof/stlplus/ntree.tpp b/src/Moof/stlplus/ntree.tpp
new file mode 100755 (executable)
index 0000000..6fd019d
--- /dev/null
@@ -0,0 +1,913 @@
+////////////////////////////////////////////////////////////////////////////////\r
+\r
+//   Author:    Andy Rushton\r
+//   Copyright: (c) Southampton University 1999-2004\r
+//              (c) Andy Rushton           2004-2009\r
+//   License:   BSD License, see ../docs/license.html\r
+\r
+////////////////////////////////////////////////////////////////////////////////\r
+#include <vector>\r
+#include <algorithm>\r
+\r
+namespace stlplus \r
+{\r
+\r
+  ////////////////////////////////////////////////////////////////////////////////\r
+  // ntree_node\r
+\r
+  template<typename T>\r
+  class ntree_node\r
+  {\r
+  public:\r
+    master_iterator<ntree<T>, ntree_node<T> > m_master;\r
+    T m_data;\r
+    ntree_node<T>* m_parent;\r
+    std::vector<ntree_node<T>*> m_children;\r
+\r
+  public:\r
+    ntree_node(const ntree<T>* owner, const T& data = T()) :\r
+      m_master(owner,this), m_data(data), m_parent(0)\r
+      {\r
+      }\r
+\r
+    void change_owner(const ntree<T>* owner)\r
+      {\r
+        m_master.change_owner(owner);\r
+        for (TYPENAME std::vector<ntree_node<T>*>::iterator i = m_children.begin(); i != m_children.end(); i++)\r
+          (*i)->change_owner(owner);\r
+      }\r
+\r
+    ~ntree_node(void)\r
+      {\r
+        m_parent = 0;\r
+        for (TYPENAME std::vector<ntree_node<T>*>::iterator i = m_children.begin(); i != m_children.end(); i++)\r
+          delete *i;\r
+      }\r
+\r
+  };\r
+\r
+  template<typename T>\r
+  static ntree_node<T>* ntree_copy(const ntree<T>* new_owner, ntree_node<T>* root)\r
+  {\r
+    if (!root) return 0;\r
+    ntree_node<T>* new_tree = new ntree_node<T>(new_owner, root->m_data);\r
+    for (TYPENAME std::vector<ntree_node<T>*>::iterator i = root->m_children.begin(); i != root->m_children.end(); i++)\r
+    {\r
+      ntree_node<T>* new_child = ntree_copy(new_owner, *i);\r
+      new_tree->m_children.push_back(new_child);\r
+      new_child->m_parent = new_tree;\r
+    }\r
+    return new_tree;\r
+  }\r
+\r
+  template<typename T>\r
+  static unsigned ntree_size(ntree_node<T>* root)\r
+  {\r
+    if (!root) return 0;\r
+    unsigned result = 1;\r
+    for (TYPENAME std::vector<ntree_node<T>*>::iterator i = root->m_children.begin(); i != root->m_children.end(); i++)\r
+      result += ntree_size(*i);\r
+    return result;\r
+  }\r
+\r
+  template<typename T>\r
+  static unsigned ntree_depth(ntree_node<T>* root)\r
+  {\r
+    unsigned depth = 0;\r
+    for (ntree_node<T>* i = root; i; i = i->m_parent)\r
+      depth++;\r
+    return depth;\r
+  }\r
+\r
+  ////////////////////////////////////////////////////////////////////////////////\r
+  // ntree_iterator\r
+\r
+  // constructor to create a null iterator - you must assign a valid value to this iterator before using it\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_iterator<T,TRef,TPtr>::ntree_iterator(void)\r
+  {\r
+  }\r
+\r
+  // used to create an alias of an iterator\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_iterator<T,TRef,TPtr>::ntree_iterator(const safe_iterator<ntree<T>, ntree_node<T> >& iterator) :\r
+    safe_iterator<ntree<T>,ntree_node<T> >(iterator)\r
+  {\r
+  }\r
+\r
+  // constructor used by ntree to create a non-null iterator\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_iterator<T,TRef,TPtr>::ntree_iterator(ntree_node<T>* node) :\r
+    safe_iterator<ntree<T>,ntree_node<T> >(node->m_master)\r
+  {\r
+  }\r
+\r
+  // constructor used by ntree to create an end iterator\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_iterator<T,TRef,TPtr>::ntree_iterator(const ntree<T>* owner) :\r
+    safe_iterator<ntree<T>,ntree_node<T> >(owner)\r
+  {\r
+  }\r
+\r
+  // destructor\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_iterator<T,TRef,TPtr>::~ntree_iterator(void)\r
+  {\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_iterator<T,TRef,TPtr>::const_iterator ntree_iterator<T,TRef,TPtr>::constify(void) const\r
+  {\r
+    return ntree_iterator<T,const T&,const T*>(*this);\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_iterator<T,TRef,TPtr>::iterator ntree_iterator<T,TRef,TPtr>::deconstify(void) const\r
+  {\r
+    return ntree_iterator<T,T&,T*>(*this);\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_iterator<T,TRef,TPtr>::operator == (const TYPENAME ntree_iterator<T,TRef,TPtr>::this_iterator& r) const\r
+  {\r
+    return equal(r);\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_iterator<T,TRef,TPtr>::operator != (const TYPENAME ntree_iterator<T,TRef,TPtr>::this_iterator& r) const\r
+  {\r
+    return !operator==(r);\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_iterator<T,TRef,TPtr>::operator < (const TYPENAME ntree_iterator<T,TRef,TPtr>::this_iterator& r) const\r
+  {\r
+    return compare(r) < 0;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_iterator<T,TRef,TPtr>::reference ntree_iterator<T,TRef,TPtr>::operator*(void) const\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    this->assert_valid();\r
+    return this->node()->m_data;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_iterator<T,TRef,TPtr>::pointer ntree_iterator<T,TRef,TPtr>::operator->(void) const\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    return &(operator*());\r
+  }\r
+\r
+  ////////////////////////////////////////////////////////////////////////////////\r
+  // ntree_prefix_iterator\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_prefix_iterator<T,TRef,TPtr>::ntree_prefix_iterator(void)\r
+  {\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_prefix_iterator<T,TRef,TPtr>::~ntree_prefix_iterator(void)\r
+  {\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_prefix_iterator<T,TRef,TPtr>::ntree_prefix_iterator(const ntree_iterator<T,TRef,TPtr>& i) :\r
+    m_iterator(i)\r
+  {\r
+    // this is initialised with the root node\r
+    // which is also the first node in prefix traversal order\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_prefix_iterator<T,TRef,TPtr>::null(void) const\r
+  {\r
+    return m_iterator.null();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_prefix_iterator<T,TRef,TPtr>::end(void) const\r
+  {\r
+    return m_iterator.end();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_prefix_iterator<T,TRef,TPtr>::valid(void) const\r
+  {\r
+    return m_iterator.valid();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_prefix_iterator<T,TRef,TPtr>::const_iterator ntree_prefix_iterator<T,TRef,TPtr>::constify(void) const\r
+  {\r
+    return ntree_prefix_iterator<T,const T&,const T*>(m_iterator);\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_prefix_iterator<T,TRef,TPtr>::iterator ntree_prefix_iterator<T,TRef,TPtr>::deconstify(void) const\r
+  {\r
+    return ntree_prefix_iterator<T,T&,T*>(m_iterator);\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_iterator<T,TRef,TPtr> ntree_prefix_iterator<T,TRef,TPtr>::simplify(void) const\r
+  {\r
+    return m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_prefix_iterator<T,TRef,TPtr>::operator == (const TYPENAME ntree_prefix_iterator<T,TRef,TPtr>::this_iterator& r) const\r
+  {\r
+    return m_iterator == r.m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_prefix_iterator<T,TRef,TPtr>::operator != (const TYPENAME ntree_prefix_iterator<T,TRef,TPtr>::this_iterator& r) const\r
+  {\r
+    return m_iterator != r.m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_prefix_iterator<T,TRef,TPtr>::operator < (const TYPENAME ntree_prefix_iterator<T,TRef,TPtr>::this_iterator& r) const\r
+  {\r
+    return m_iterator < r.m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_prefix_iterator<T,TRef,TPtr>::this_iterator& ntree_prefix_iterator<T,TRef,TPtr>::operator ++ (void)\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    // pre-increment operator\r
+    // algorithm: if there are any children, visit child 0, otherwise, go to\r
+    // parent and deduce which child the start node was of that parent - if\r
+    // there are further children, go into the next one. Otherwise, go up the\r
+    // tree and test again for further children. Return null if there are no\r
+    // further nodes\r
+    m_iterator.assert_valid();\r
+    ntree_node<T>* old_node = m_iterator.node();\r
+    if (!old_node->m_children.empty())\r
+    {\r
+      // simply take the first child of this node\r
+      m_iterator.set(old_node->m_children[0]->m_master);\r
+    }\r
+    else\r
+    {\r
+      // this loop walks up the parent pointers\r
+      // either it will walk off the top and exit or a new node will be found and the loop will exit\r
+      for (;;)\r
+      {\r
+        // go up a level\r
+        ntree_node<T>* parent = old_node->m_parent;\r
+        if (!parent)\r
+        {\r
+          // we've walked off the top of the tree, so return end\r
+          m_iterator.set_end();\r
+          break;\r
+        }\r
+        else\r
+        {\r
+          // otherwise walk down the next child - if there is one\r
+          // find which index the old node was relative to this node\r
+          TYPENAME std::vector<ntree_node<T>*>::iterator found = \r
+            std::find(parent->m_children.begin(), parent->m_children.end(), old_node);\r
+          // if this was found, then see if there is another and if so return that\r
+          found++;\r
+          if (found != parent->m_children.end())\r
+          {\r
+            // visit the next child\r
+            m_iterator.set((*found)->m_master);\r
+            break;\r
+          }\r
+          else\r
+          {\r
+            // keep going up\r
+            old_node = parent;\r
+          }\r
+        }\r
+      }\r
+    }\r
+    return *this;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_prefix_iterator<T,TRef,TPtr>::this_iterator ntree_prefix_iterator<T,TRef,TPtr>::operator ++ (int)\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    // post-increment is defined in terms of the pre-increment\r
+    ntree_prefix_iterator<T,TRef,TPtr> result(*this);\r
+    ++(*this);\r
+    return result;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_prefix_iterator<T,TRef,TPtr>::reference ntree_prefix_iterator<T,TRef,TPtr>::operator*(void) const\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    return m_iterator.operator*();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_prefix_iterator<T,TRef,TPtr>::pointer ntree_prefix_iterator<T,TRef,TPtr>::operator->(void) const\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    return m_iterator.operator->();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  const ntree_iterator<T,TRef,TPtr>& ntree_prefix_iterator<T,TRef,TPtr>::get_iterator(void) const\r
+  {\r
+    return m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_iterator<T,TRef,TPtr>& ntree_prefix_iterator<T,TRef,TPtr>::get_iterator(void)\r
+  {\r
+    return m_iterator;\r
+  }\r
+\r
+  ////////////////////////////////////////////////////////////////////////////////\r
+  // ntree_postfix_iterator\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_postfix_iterator<T,TRef,TPtr>::ntree_postfix_iterator(void)\r
+  {\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_postfix_iterator<T,TRef,TPtr>::~ntree_postfix_iterator(void)\r
+  {\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_postfix_iterator<T,TRef,TPtr>::ntree_postfix_iterator(const ntree_iterator<T,TRef,TPtr>& i) :\r
+    m_iterator(i)\r
+  {\r
+    // this is initialised with the root node\r
+    // initially traverse to the first node to be visited\r
+    if (m_iterator.valid())\r
+    {\r
+      ntree_node<T>* node = m_iterator.node();\r
+      while (!node->m_children.empty())\r
+        node = node->m_children[0];\r
+      m_iterator.set(node->m_master);\r
+    }\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_postfix_iterator<T,TRef,TPtr>::null(void) const\r
+  {\r
+    return m_iterator.null();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_postfix_iterator<T,TRef,TPtr>::end(void) const\r
+  {\r
+    return m_iterator.end();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_postfix_iterator<T,TRef,TPtr>::valid(void) const\r
+  {\r
+    return m_iterator.valid();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_postfix_iterator<T,TRef,TPtr>::const_iterator ntree_postfix_iterator<T,TRef,TPtr>::constify(void) const\r
+  {\r
+    return ntree_postfix_iterator<T,const T&,const T*>(m_iterator);\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_postfix_iterator<T,TRef,TPtr>::iterator ntree_postfix_iterator<T,TRef,TPtr>::deconstify(void) const\r
+  {\r
+    return ntree_postfix_iterator<T,T&,T*>(m_iterator);\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_iterator<T,TRef,TPtr> ntree_postfix_iterator<T,TRef,TPtr>::simplify(void) const\r
+  {\r
+    return m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_postfix_iterator<T,TRef,TPtr>::operator == (const TYPENAME ntree_postfix_iterator<T,TRef,TPtr>::this_iterator& r) const\r
+  {\r
+    return m_iterator == r.m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_postfix_iterator<T,TRef,TPtr>::operator != (const TYPENAME ntree_postfix_iterator<T,TRef,TPtr>::this_iterator& r) const\r
+  {\r
+    return m_iterator != r.m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  bool ntree_postfix_iterator<T,TRef,TPtr>::operator < (const TYPENAME ntree_postfix_iterator<T,TRef,TPtr>::this_iterator& r) const\r
+  {\r
+    return m_iterator < r.m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_postfix_iterator<T,TRef,TPtr>::this_iterator& ntree_postfix_iterator<T,TRef,TPtr>::operator ++ (void)\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    // pre-increment operator\r
+    // algorithm: this node has been visited, therefore all children must have\r
+    // already been visited. So go to parent. Return null if the parent is null.\r
+    // Otherwise deduce which child the start node was of that parent - if there\r
+    // are further children, go into the next one and then walk down any\r
+    // subsequent first-child pointers to the bottom. Otherwise, if there are no\r
+    // children then the parent node is the next in the traversal.\r
+    m_iterator.assert_valid();\r
+    // go up a level\r
+    ntree_node<T>* old_node = m_iterator.node();\r
+    ntree_node<T>* parent = old_node->m_parent;\r
+    if (!parent)\r
+    {\r
+      // we've walked off the top of the tree, so return end\r
+      m_iterator.set_end();\r
+    }\r
+    else\r
+    {\r
+      // otherwise find which index the old node was relative to this node\r
+      TYPENAME std::vector<ntree_node<T>*>::iterator found =\r
+        std::find(parent->m_children.begin(), parent->m_children.end(), old_node);\r
+      // if this was found, then see if there is another\r
+      found++;\r
+      if (found != parent->m_children.end())\r
+      {\r
+        // if so traverse to it and walk down the leftmost child pointers to the bottom of the new sub-tree\r
+        ntree_node<T>* new_node = *found;\r
+        while (!new_node->m_children.empty())\r
+          new_node = new_node->m_children[0];\r
+        m_iterator.set(new_node->m_master);\r
+      }\r
+      else\r
+      {\r
+        // the parent's children have all been visited - so the parent is visited\r
+        m_iterator.set(parent->m_master);\r
+      }\r
+    }\r
+    return *this;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_postfix_iterator<T,TRef,TPtr>::this_iterator ntree_postfix_iterator<T,TRef,TPtr>::operator ++ (int)\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    // post-increment is defined in terms of the pre-increment\r
+    ntree_postfix_iterator<T,TRef,TPtr> result(*this);\r
+    ++(*this);\r
+    return result;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_postfix_iterator<T,TRef,TPtr>::reference ntree_postfix_iterator<T,TRef,TPtr>::operator*(void) const\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    return m_iterator.operator*();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  TYPENAME ntree_postfix_iterator<T,TRef,TPtr>::pointer ntree_postfix_iterator<T,TRef,TPtr>::operator->(void) const\r
+    throw(null_dereference,end_dereference)\r
+  {\r
+    return m_iterator.operator->();\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  const ntree_iterator<T,TRef,TPtr>& ntree_postfix_iterator<T,TRef,TPtr>::get_iterator(void) const\r
+  {\r
+    return m_iterator;\r
+  }\r
+\r
+  template<typename T, typename TRef, typename TPtr>\r
+  ntree_iterator<T,TRef,TPtr>& ntree_postfix_iterator<T,TRef,TPtr>::get_iterator(void)\r
+  {\r
+    return m_iterator;\r
+  }\r
+\r
+  ////////////////////////////////////////////////////////////////////////////////\r
+  ////////////////////////////////////////////////////////////////////////////////\r
+  // ntree\r
+  ////////////////////////////////////////////////////////////////////////////////\r
+  ////////////////////////////////////////////////////////////////////////////////\r
+\r
+  template<typename T>\r
+  ntree<T>::ntree(void) : m_root(0)\r
+  {\r
+  }\r
+\r
+  template<typename T>\r
+  ntree<T>::~ntree(void)\r
+  {\r
+    if (m_root) delete m_root;\r
+  }\r
+\r
+  template<typename T>\r
+  ntree<T>::ntree(const ntree<T>& r) : m_root(0)\r
+  {\r
+    *this = r;\r
+  }\r
+\r
+  template<typename T>\r
+  ntree<T>& ntree<T>::operator=(const ntree<T>& r)\r
+  {\r
+    if (m_root) delete m_root;\r
+    m_root = ntree_copy(this, r.m_root);\r
+    return *this;\r
+  }\r
+\r
+  template<typename T>\r
+  bool ntree<T>::empty(void) const\r
+  {\r
+    return m_root == 0;\r
+  }\r
+\r
+  template<typename T>\r
+  unsigned ntree<T>::size(void) const\r
+  {\r
+    return ntree_size(m_root);\r
+  }\r
+\r
+  template<typename T>\r
+  unsigned ntree<T>::size(const TYPENAME ntree<T>::const_iterator& i) const\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    i.assert_valid(this);\r
+    return ntree_size(i.node());\r
+  }\r
+\r
+  template<typename T>\r
+  unsigned ntree<T>::size(const TYPENAME ntree<T>::iterator& i)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    i.assert_valid(this);\r
+    return ntree_size(i.node());\r
+  }\r
+\r
+  template<typename T>\r
+  unsigned ntree<T>::depth(const TYPENAME ntree<T>::const_iterator& i) const\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    i.assert_valid(this);\r
+    return ntree_depth(i.node());\r
+  }\r
+\r
+  template<typename T>\r
+  unsigned ntree<T>::depth(const TYPENAME ntree<T>::iterator& i)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    i.assert_valid(this);\r
+    return ntree_depth(i.node());\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::const_iterator ntree<T>::root(void) const\r
+  {\r
+    if (!m_root) return ntree_iterator<T,const T&,const T*>(this);\r
+    return ntree_iterator<T,const T&,const T*>(m_root);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::iterator ntree<T>::root(void)\r
+  {\r
+    if (!m_root) return ntree_iterator<T,T&,T*>(this);\r
+    return ntree_iterator<T,T&,T*>(m_root);\r
+  }\r
+\r
+  template<typename T>\r
+  unsigned ntree<T>::children(const TYPENAME ntree<T>::const_iterator& i) const\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    i.assert_valid(this);\r
+    return i.node()->m_children.size();\r
+  }\r
+\r
+  template<typename T>\r
+  unsigned ntree<T>::children(const ntree_iterator<T,T&,T*>& i)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    i.assert_valid(this);\r
+    return i.node()->m_children.size();\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::const_iterator ntree<T>::child(const TYPENAME ntree<T>::const_iterator& i, unsigned child) const\r
+    throw(wrong_object,null_dereference,end_dereference,std::out_of_range)\r
+  {\r
+    i.assert_valid(this);\r
+    if (child >= children(i)) throw std::out_of_range("stlplus::ntree");\r
+    return ntree_iterator<T,const T&,const T*>(i.node()->m_children[child]);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::iterator ntree<T>::child(const TYPENAME ntree<T>::iterator& i, unsigned child)\r
+    throw(wrong_object,null_dereference,end_dereference,std::out_of_range)\r
+  {\r
+    i.assert_valid(this);\r
+    if (child >= children(i)) throw std::out_of_range("stlplus::ntree");\r
+    return ntree_iterator<T,T&,T*>(i.node()->m_children[child]);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::const_iterator ntree<T>::parent(const TYPENAME ntree<T>::const_iterator& i) const\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    i.assert_valid(this);\r
+    ntree_node<T>* parent = i.node()->m_parent;\r
+    if (!parent) return ntree_iterator<T,const T&,const T*>(this);\r
+    return ntree_iterator<T,const T&,const T*>(parent);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::iterator ntree<T>::parent(const TYPENAME ntree<T>::iterator& i)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    i.assert_valid(this);\r
+    ntree_node<T>* parent = i.node()->m_parent;\r
+    if (!parent) return ntree_iterator<T,T&,T*>(this);\r
+    return ntree_iterator<T,T&,T*>(parent);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::const_prefix_iterator ntree<T>::prefix_begin(void) const\r
+  {\r
+    return ntree_prefix_iterator<T,const T&,const T*>(root());\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::prefix_iterator ntree<T>::prefix_begin(void)\r
+  {\r
+    return ntree_prefix_iterator<T,T&,T*>(root());\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::const_prefix_iterator ntree<T>::prefix_end(void) const\r
+  {\r
+    return ntree_prefix_iterator<T,const T&,const T*>(ntree_iterator<T,const T&,const T*>(this));\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::prefix_iterator ntree<T>::prefix_end(void)\r
+  {\r
+    return ntree_prefix_iterator<T,T&,T*>(ntree_iterator<T,T&,T*>(this));\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::const_postfix_iterator ntree<T>::postfix_begin(void) const\r
+  {\r
+    return ntree_postfix_iterator<T,const T&,const T*>(root());\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::postfix_iterator ntree<T>::postfix_begin(void)\r
+  {\r
+    return ntree_postfix_iterator<T,T&,T*>(root());\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::const_postfix_iterator ntree<T>::postfix_end(void) const\r
+  {\r
+    return ntree_postfix_iterator<T,const T&,const T*>(ntree_iterator<T,const T&,const T*>(this));\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::postfix_iterator ntree<T>::postfix_end(void)\r
+  {\r
+    return ntree_postfix_iterator<T,T&,T*>(ntree_iterator<T,T&,T*>(this));\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::iterator ntree<T>::insert(const T& data)\r
+  {\r
+    // insert a new node as the root\r
+    return insert(ntree_iterator<T,T&,T*>(this), 0, data);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::iterator ntree<T>::insert(const TYPENAME ntree<T>::iterator& i, unsigned offset, const T& data)\r
+    throw(wrong_object,null_dereference,end_dereference,std::out_of_range)\r
+  {\r
+    // if i is the end iterator, this means insert a new root\r
+    if (i.end())\r
+      erase();\r
+    else\r
+    {\r
+      i.assert_valid(this);\r
+      if (offset > children(i)) throw std::out_of_range("stlplus::ntree");\r
+    }\r
+    ntree_node<T>* new_node = new ntree_node<T>(this,data);\r
+    if (i.end())\r
+    {\r
+      m_root = new_node;\r
+    }\r
+    else\r
+    {\r
+      i.node()->m_children.insert(i.node()->m_children.begin()+offset,new_node);\r
+      new_node->m_parent = i.node();\r
+    }\r
+    return ntree_iterator<T,T&,T*>(new_node);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::iterator ntree<T>::append(const TYPENAME ntree<T>::iterator& i, const T& data)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    return insert(i, i.node()->m_children.size(), data);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::iterator ntree<T>::insert(const TYPENAME ntree<T>::iterator& i, unsigned offset, const ntree<T>& tree)\r
+    throw(wrong_object,null_dereference,end_dereference,std::out_of_range)\r
+  {\r
+    // insert a whole tree as a child of i\r
+    i.assert_valid(this);\r
+    if (offset > children(i)) throw std::out_of_range("stlplus::ntree");\r
+    ntree_node<T>* new_node = ntree_copy(this, tree.m_root);\r
+    i.node()->m_children.insert(i.node()->m_children.begin()+offset,new_node);\r
+    new_node->m_parent = i.node();\r
+    return ntree_iterator<T,T&,T*>(new_node);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::iterator ntree<T>::append(const TYPENAME ntree<T>::iterator& i, const ntree<T>& tree)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    return insert(i, children(i), tree);\r
+  }\r
+\r
+  template<typename T>\r
+  TYPENAME ntree<T>::iterator ntree<T>::push(const TYPENAME ntree<T>::iterator& node, const T& data)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    // insert a new node to replace the existing node in the tree\r
+    // making the original node the child of the new node\r
+    // i.e. (node) becomes (new)->(node)\r
+    // afterwards, the iterator still points to the old node, now the child\r
+    // returns the iterator to the new node\r
+    node.assert_valid(this);\r
+    ntree_node<T>* new_node = new ntree_node<T>(this,data);\r
+    if (node.node() == m_root)\r
+    {\r
+      // pushing the root node\r
+      m_root = new_node;\r
+      new_node->m_parent = 0;\r
+    }\r
+    else\r
+    {\r
+      // pushing a sub-node\r
+      *(std::find(node.node()->m_parent->m_children.begin(), node.node()->m_parent->m_children.end(), node.node())) = new_node;\r
+      new_node->m_parent = node.node()->m_parent;\r
+    }\r
+    // link up the old node as the child of the new node\r
+    new_node->m_children.insert(new_node->m_children.begin(),node.node());\r
+    node.node()->m_parent = new_node;\r
+    return ntree_iterator<T,T&,T*>(new_node);\r
+  }\r
+\r
+  template<typename T>\r
+  void ntree<T>::pop(const TYPENAME ntree<T>::iterator& parent, unsigned offset)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    // inverse of push\r
+    // removes the specified child of the parent node, adding its children to the parent node at the same offset\r
+    parent.assert_valid(this);\r
+    ntree_node<T>* node = parent.node();\r
+    if (offset >= node->m_children.size()) throw std::out_of_range("stlplus::ntree");\r
+    // move the grandchildren first\r
+    ntree_node<T>* child = parent.node()->m_children[offset];\r
+    while (!child->m_children.empty())\r
+    {\r
+      // remove the last grandchild and insert into node just after the child to be removed\r
+      ntree_node<T>* grandchild = child->m_children[child->m_children.size()-1];\r
+      child->m_children.pop_back();\r
+      node->m_children.insert(node->m_children.begin()+offset+1, grandchild);\r
+      grandchild->m_parent = node;\r
+    }\r
+    // now remove the child\r
+    node->m_children.erase(node->m_children.begin()+offset);\r
+    delete child;\r
+  }\r
+\r
+  template<typename T>\r
+  void ntree<T>::erase(void)\r
+  {\r
+    // erase the whole tree\r
+    erase(root());\r
+  }\r
+\r
+  template<typename T>\r
+  void ntree<T>::erase(const TYPENAME ntree<T>::iterator& i)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    if (!i.end())\r
+    {\r
+      // erase this node and its subtree\r
+      // do this by erasing this child of its parent\r
+      // handle the case of erasing the root\r
+      i.assert_valid(this);\r
+      ntree_node<T>* node = i.node();\r
+      if (node == m_root)\r
+      {\r
+        delete m_root;\r
+        m_root = 0;\r
+      }\r
+      else\r
+      {\r
+        ntree_node<T>* parent = node->m_parent;\r
+        // impossible for parent to be null - should assert this\r
+        TYPENAME std::vector<ntree_node<T>*>::iterator found = \r
+          std::find(parent->m_children.begin(), parent->m_children.end(), node);\r
+        // impossible for find to fail - should assert this\r
+        parent->m_children.erase(found);\r
+        delete node;\r
+      }\r
+    }\r
+  }\r
+\r
+  template<typename T>\r
+  void ntree<T>::erase(const TYPENAME ntree<T>::iterator& i, unsigned offset)\r
+    throw(wrong_object,null_dereference,end_dereference,std::out_of_range)\r
+  {\r
+    erase(child(i, offset));\r
+  }\r
+\r
+  template<typename T>\r
+  ntree<T> ntree<T>::subtree(void)\r
+  {\r
+    return subtree(root());\r
+  }\r
+\r
+  template<typename T>\r
+  ntree<T> ntree<T>::subtree(const TYPENAME ntree<T>::iterator& i)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    ntree<T> result;\r
+    if (!i.end())\r
+    {\r
+      i.assert_valid(this);\r
+      result.m_root = ntree_copy(&result, i.node());\r
+    }\r
+    return result;\r
+  }\r
+\r
+  template<typename T>\r
+  ntree<T> ntree<T>::subtree(const TYPENAME ntree<T>::iterator& i, unsigned offset)\r
+    throw(wrong_object,null_dereference,end_dereference,std::out_of_range)\r
+  {\r
+    return subtree(child(i, offset));\r
+  }\r
+\r
+  template<typename T>\r
+  ntree<T> ntree<T>::cut(void)\r
+  {\r
+    return cut(root());\r
+  }\r
+\r
+  template<typename T>\r
+  ntree<T> ntree<T>::cut(const TYPENAME ntree<T>::iterator& i)\r
+    throw(wrong_object,null_dereference,end_dereference)\r
+  {\r
+    ntree<T> result;\r
+    if (!i.end())\r
+    {\r
+      i.assert_valid(this);\r
+      ntree_node<T>* node = i.node();\r
+      if (node == m_root)\r
+      {\r
+        result.m_root = m_root;\r
+        m_root = 0;\r
+      }\r
+      else\r
+      {\r
+        ntree_node<T>* parent = node->m_parent;\r
+        // impossible for parent to be null - should assert this\r
+        TYPENAME std::vector<ntree_node<T>*>::iterator found = \r
+          std::find(parent->m_children.begin(), parent->m_children.end(), node);\r
+        // impossible for find to fail - should assert this\r
+        result.m_root = *found;\r
+        parent->m_children.erase(found);\r
+      }\r
+      if (result.m_root)\r
+      {\r
+        result.m_root->m_parent = 0;\r
+        result.m_root->set_new_owner(&result);\r
+      }\r
+    }\r
+    return result;\r
+  }\r
+\r
+  template<typename T>\r
+  ntree<T> ntree<T>::cut(const TYPENAME ntree<T>::iterator& i, unsigned offset)\r
+    throw(wrong_object,null_dereference,end_dereference,std::out_of_range)\r
+  {\r
+    return cut(child(i, offset));\r
+  }\r
+\r
+  ////////////////////////////////////////////////////////////////////////////////\r
+\r
+} // end namespace stlplus\r
+\r
This page took 0.0347 seconds and 4 git commands to generate.