/*] Copyright (c) 2009-2010, Charles McGarvey [************************** **] All rights reserved. * * vi:ts=4 sw=4 tw=75 * * Distributable under the terms and conditions of the 2-clause BSD license; * see the file COPYING for a complete text of the license. * **************************************************************************/ #ifndef _MOOF_MATH_HH_ #define _MOOF_MATH_HH_ /** * \file math.hh * General math-related types and functions. */ #include "../config.h" #include #include #include #if USE_DOUBLE_PRECISION typedef GLdouble GLscalar; #define GL_SCALAR GL_DOUBLE #define SCALAR(D) (D) #else typedef GLfloat GLscalar; #define GL_SCALAR GL_FLOAT #define SCALAR(F) (F##f) #endif namespace moof { using namespace cml; typedef GLscalar scalar; typedef vector< scalar, fixed<2> > vector2; typedef vector< scalar, fixed<3> > vector3; typedef vector< scalar, fixed<4> > vector4; typedef matrix< scalar, fixed<2,2>, col_basis, col_major > matrix2; typedef matrix< scalar, fixed<3,3>, col_basis, col_major > matrix3; typedef matrix< scalar, fixed<4,4>, col_basis, col_major > matrix4; typedef quaternion< scalar, fixed<>, vector_first, positive_cross > quaternion; typedef constants constants; inline vector3 demote(const vector4& vec) { return vector3(vec[0], vec[1], vec[2]); } inline vector2 demote(const vector3& vec) { return vector2(vec[0], vec[1]); } inline vector4 promote(const vector3& vec, scalar extra = SCALAR(0.0)) { return vector4(vec[0], vec[1], vec[2], extra); } inline vector3 promote(const vector2& vec, scalar extra = SCALAR(0.0)) { return vector3(vec[0], vec[1], extra); } const scalar EPSILON = SCALAR(0.000001); /** * Check the equality of scalars with a certain degree of error allowed. */ inline bool is_equal(scalar a, scalar b, scalar epsilon = EPSILON) { return std::abs(a - b) < epsilon; } // Here are some generic implementations of a few simple integrators. To // use, you need one type representing the state and another containing the // derivatives of the primary state variables. The state class must // implement these methods: // // void calculate_derivative(Derivative_Type& derivative, scalar absoluteTime); // void step(const Derivative_Type& derivative, scalar deltaTime); // // Additionally, the derivative class must overload a few operators: // // Derivative_Type operator + (const Derivative_Type& other) const // Derivative_Type operator * (const Derivative_Type& other) const template inline D evaluate(const S& state, scalar t) { D derivative; state.calculate_derivative(derivative, t); return derivative; } template inline D evaluate(S state, scalar t, scalar dt, const D& derivative) { state.step(derivative, dt); return evaluate(state, t + dt); } template inline void euler(S& state, scalar t, scalar dt) { D a = evaluate(state, t); state.step(a, dt); } template inline void rk2(S& state, scalar t, scalar dt) { D a = evaluate(state, t); D b = evaluate(state, t, dt * SCALAR(0.5), a); state.step(b, dt); } template inline void rk4(S& state, scalar t, scalar dt) { D a = evaluate(state, t); D b = evaluate(state, t, dt * SCALAR(0.5), a); D c = evaluate(state, t, dt * SCALAR(0.5), b); D d = evaluate(state, t, dt, c); state.step((a + (b + c) * SCALAR(2.0) + d) * SCALAR(1.0/6.0), dt); } } // namespace moof #endif // _MOOF_MATH_HH_