/*] Copyright (c) 2009-2010, Charles McGarvey [************************** **] All rights reserved. * * vi:ts=4 sw=4 tw=75 * * Distributable under the terms and conditions of the 2-clause BSD license; * see the file COPYING for a complete text of the license. * **************************************************************************/ #include "hash.hh" namespace moof { // MurmurHash2, by Austin Appleby // http://murmurhash.googlepages.com/ // This function is in the public domain. // Note - This code makes a few assumptions about how your machine behaves - // 1. We can read a 4-byte value from any address without crashing // 2. sizeof(int) == 4 // And it has a few limitations - // 1. It will not work incrementally. // 2. It will not produce the same results on little-endian and big-endian // machines. unsigned hash_function::operator()(const void* key, int len, unsigned int seed) const { // 'm' and 'r' are mixing constants generated offline. // They're not really 'magic', they just happen to work well. const unsigned int m = 0x5bd1e995; const int r = 24; // Initialize the hash to a 'random' value unsigned int h = seed ^ len; // Mix 4 bytes at a time into the hash const unsigned char* data = (const unsigned char*)key; while (len >= 4) { unsigned int k = *(unsigned int*)data; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } // Handle the last few bytes of the input array switch (len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; // Do a few final mixes of the hash to ensure the last few // bytes are well-incorporated. h ^= h >> 13; h *= m; h ^= h >> 15; return h; } } // namespace moof