/******************************************************************************* Copyright (c) 2009, Charles McGarvey All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #ifndef _INTERPOLATOR_HH_ #define _INTERPOLATOR_HH_ namespace dc { class interpolator { void clamp(scalar& value) { if (value > 1.0) { switch (theMode) { case stop: value = 1.0; stopped = true; break; case repeat: value -= 1.0; break; case oscillate: value = 2.0 - value; scale *= -1.0; break; } } else if (value < 0.0) { switch (theMode) { case stop: value = 0.0; stopped = true; break; case repeat: value += 1.0; break; case oscillate: value = -value; scale *= -1.0; break; } } } public: typedef enum { stop = 0, repeat = 1, oscillate = 2 } mode; void init(scalar seconds = 1.0, mode onFinish = stop) { scale = 1.0 / seconds; alpha = 0.0; setMode(onFinish); } void setMode(mode onFinish) { theMode = onFinish; stopped = false; } void update(scalar dt) { if (!stopped) { alpha += dt * scale; clamp(alpha); calculate(alpha); } } virtual void calculate(scalar alpha) = 0; private: mode theMode; scalar alpha; scalar scale; bool stopped; }; template class interpolator_base : public interpolator { public: void init(scalar seconds = 1.0, mode onFinish = stop) { interpolator::init(seconds, onFinish); calculate(0.0); // set value calculate(0.0); // set previous } void calculate(scalar alpha) { previous = value; calculate(value, alpha); } virtual void calculate(T& value, scalar alpha) = 0; const T& getValue() { return value; } const T getState(scalar alpha) { return cml::lerp(previous, value, alpha); } private: T value; T previous; }; template class binomial_interpolator : public interpolator_base { public: binomial_interpolator() {} explicit binomial_interpolator(const T coeff[D+1], scalar seconds = 1.0, interpolator::mode onFinish = interpolator::stop) { init(coeff, seconds, onFinish); } void init(const T coeff[D+1], scalar seconds = 1.0, interpolator::mode onFinish = interpolator::stop) { scalar fac[D+1]; fac[0] = 1.0; fac[1] = 1.0; // build an array of the computed factorials we will need for (int i = 2; i <= D; i++) { fac[i] = i * fac[i - 1]; } // combine the coefficients for fast updating for (int i = 0; i <= D; i++) { // n! / (k! * (n - k)!) coefficient[i] = coeff[i] * fac[D] / (fac[i] * fac[D - i]); } interpolator_base::init(seconds, onFinish); } void calculate(T& value, scalar alpha) { scalar beta = 1.0 - alpha; value = coefficient[0] * std::pow(beta, D); for (int i = 1; i <= D; i++) { value += coefficient[i] * std::pow(beta, D - i) * std::pow(alpha, i); } } private: T coefficient[D+1]; }; template class binomial_interpolator : public interpolator_base { public: binomial_interpolator() {} explicit binomial_interpolator(const T coeff[2], scalar seconds = 1.0, interpolator::mode onFinish = interpolator::stop) //interpolator_base(seconds, onFinish) { init(coeff, seconds, onFinish); } void init(const T coeff[2], scalar seconds = 1.0, interpolator::mode onFinish = interpolator::stop) { coefficient[0] = coeff[0]; coefficient[1] = coeff[1]; interpolator_base::init(seconds, onFinish); } void calculate(T& value, scalar alpha) { value = cml::lerp(coefficient[0], coefficient[1], alpha); } private: T coefficient[2]; }; // Here are some aliases for more common interpolators. Also see the // interpolation functions in cml for other types of interpolation such as // slerp and some multi-alpha interpolators. typedef binomial_interpolator lerps; // linear typedef binomial_interpolator lerpv2; typedef binomial_interpolator lerpv3; typedef binomial_interpolator lerpv4; typedef binomial_interpolator qerps; // quadratic typedef binomial_interpolator qerpv2; typedef binomial_interpolator qerpv3; typedef binomial_interpolator qerpv4; typedef binomial_interpolator cerps; // cubic typedef binomial_interpolator cerpv2; typedef binomial_interpolator cerpv3; typedef binomial_interpolator cerpv4; } // namespace dc #endif // _INTERPOLATOR_HH_ /** vim: set ts=4 sw=4 tw=80: *************************************************/