/* -*- C++ -*- ------------------------------------------------------------ Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/ The Configurable Math Library (CML) is distributed under the terms of the Boost Software License, v1.0 (see cml/LICENSE for details). *-----------------------------------------------------------------------*/ /** @file * @brief Vector linear expression classes. */ #ifndef vector_expr_h #define vector_expr_h #include #include #include #include /* XXX Don't know which it should be just yet, since RVO seems to obviate need * for a reference type. However, copy by value copies the *entire expression * tree rooted at the VectorXpr<>, so this choice is bound to affect * performace for some compiler or another: */ #define VECXPR_ARG_TYPE const et::VectorXpr& #define VECXPR_ARG_TYPE_N(_N_) const et::VectorXpr& //#define VECXPR_ARG_TYPE const et::VectorXpr //#define VECXPR_ARG_TYPE_N(_N_) const et::VectorXpr namespace cml { namespace et { /** A placeholder for a vector expression in an expression tree. */ template class VectorXpr { public: typedef VectorXpr expr_type; /* Record ary-ness of the expression: */ typedef typename ExprT::expr_ary expr_ary; /* Copy the expression by value into higher-up expressions: */ typedef expr_type expr_const_reference; typedef typename ExprT::value_type value_type; typedef vector_result_tag result_tag; typedef typename ExprT::size_tag size_tag; /* Store the expression traits: */ typedef ExprTraits expr_traits; /* Get the reference type: */ typedef typename expr_traits::const_reference expr_reference; /* Get the result type: */ typedef typename expr_traits::result_type result_type; /* For matching by assignability: */ typedef cml::et::not_assignable_tag assignable_tag; /* Get the temporary type: */ typedef typename result_type::temporary_type temporary_type; public: /** Record result size as an enum. */ enum { array_size = ExprT::array_size }; public: /** Return square of the length. */ value_type length_squared() const { return m_expr.length_squared(); } /** Return the length. */ value_type length() const { return m_expr.length(); } /** Return the result as a normalized vector. */ result_type normalize() const { return m_expr.normalize(); } /** Compute value at index i of the result vector. */ value_type operator[](size_t i) const { return m_expr[i]; } public: /** Return size of this expression (same as subexpression's size). */ size_t size() const { return m_expr.size(); } /** Return reference to contained expression. */ expr_reference expression() const { return m_expr; } public: /** Construct from the subexpression to store. */ explicit VectorXpr(expr_reference expr) : m_expr(expr) {} /** Copy constructor. */ VectorXpr(const expr_type& e) : m_expr(e.m_expr) {} protected: expr_reference m_expr; private: /* Cannot be assigned to: */ expr_type& operator=(const expr_type&); }; /** Expression traits class for VectorXpr<>. */ template struct ExprTraits< VectorXpr > { typedef VectorXpr expr_type; typedef ExprT arg_type; typedef typename expr_type::value_type value_type; typedef typename expr_type::expr_const_reference const_reference; typedef typename expr_type::result_tag result_tag; typedef typename expr_type::size_tag size_tag; typedef typename expr_type::result_type result_type; typedef typename expr_type::assignable_tag assignable_tag; typedef expr_node_tag node_tag; value_type get(const expr_type& v, size_t i) const { return v[i]; } size_t size(const expr_type& e) const { return e.size(); } }; /** A unary vector expression. * * The operator's operator() method must take exactly one argument. */ template class UnaryVectorOp { public: typedef UnaryVectorOp expr_type; /* Record ary-ness of the expression: */ typedef unary_expression expr_ary; /* Copy the expression by value into higher-up expressions: */ typedef expr_type expr_const_reference; typedef typename OpT::value_type value_type; typedef vector_result_tag result_tag; typedef typename ExprT::size_tag size_tag; /* Store the expression traits for the subexpression: */ typedef ExprTraits expr_traits; /* Reference type for the subexpression: */ typedef typename expr_traits::const_reference expr_reference; /* Get the result type (same as for subexpression): */ typedef typename expr_traits::result_type result_type; /* For matching by assignability: */ typedef cml::et::not_assignable_tag assignable_tag; /* Get the temporary type: */ typedef typename result_type::temporary_type temporary_type; public: /** Record result size as an enum. */ enum { array_size = ExprT::array_size }; public: /** Return square of the length. */ value_type length_squared() const { return dot( VectorXpr(*this), VectorXpr(*this)); } /** Return the length. */ value_type length() const { return std::sqrt(length_squared()); } /** Return the result as a normalized vector. */ result_type normalize() const { result_type v(VectorXpr(*this)); return v.normalize(); } /** Compute value at index i of the result vector. */ value_type operator[](size_t i) const { /* This uses the expression traits to figure out how to access the * i'th index of the subexpression: */ return OpT().apply(expr_traits().get(m_expr,i)); } public: /** Return size of this expression (same as argument's size). */ size_t size() const { return m_expr.size(); } /** Return reference to contained expression. */ expr_reference expression() const { return m_expr; } public: /** Construct from the subexpression. */ explicit UnaryVectorOp(expr_reference expr) : m_expr(expr) {} /** Copy constructor. */ UnaryVectorOp(const expr_type& e) : m_expr(e.m_expr) {} protected: expr_reference m_expr; private: /* Cannot be assigned to: */ expr_type& operator=(const expr_type&); }; /** Expression traits class for UnaryVectorOp<>. */ template struct ExprTraits< UnaryVectorOp > { typedef UnaryVectorOp expr_type; typedef ExprT arg_type; typedef typename expr_type::value_type value_type; typedef typename expr_type::expr_const_reference const_reference; typedef typename expr_type::result_tag result_tag; typedef typename expr_type::size_tag size_tag; typedef typename expr_type::result_type result_type; typedef typename expr_type::assignable_tag assignable_tag; typedef expr_node_tag node_tag; value_type get(const expr_type& v, size_t i) const { return v[i]; } size_t size(const expr_type& e) const { return e.size(); } }; /** A binary vector expression. * * The operator's operator() method must take exactly two arguments. */ template class BinaryVectorOp { public: typedef BinaryVectorOp expr_type; /* Record ary-ness of the expression: */ typedef binary_expression expr_ary; /* Copy the expression by value into higher-up expressions: */ typedef expr_type expr_const_reference; typedef typename OpT::value_type value_type; typedef vector_result_tag result_tag; /* Store the expression traits types for the two subexpressions: */ typedef ExprTraits left_traits; typedef ExprTraits right_traits; /* Reference types for the two subexpressions: */ typedef typename left_traits::const_reference left_reference; typedef typename right_traits::const_reference right_reference; /* Figure out the expression's resulting (vector) type: */ typedef typename left_traits::result_type left_result; typedef typename right_traits::result_type right_result; typedef typename VectorPromote::type result_type; typedef typename result_type::size_tag size_tag; /* For matching by assignability: */ typedef cml::et::not_assignable_tag assignable_tag; /* Get the temporary type: */ typedef typename result_type::temporary_type temporary_type; /* Define a size checker: */ typedef GetCheckedSize checked_size; public: /** Record result size as an enum (if applicable). */ enum { array_size = result_type::array_size }; public: /** Return square of the length. */ value_type length_squared() const { return dot( VectorXpr(*this), VectorXpr(*this)); } /** Return the length. */ value_type length() const { return std::sqrt(length_squared()); } /** Return the result as a normalized vector. */ result_type normalize() const { result_type v(VectorXpr(*this)); return v.normalize(); } /** Compute value at index i of the result vector. */ value_type operator[](size_t i) const { /* This uses the expression traits to figure out how to access the * i'th index of the two subexpressions: */ return OpT().apply( left_traits().get(m_left,i), right_traits().get(m_right,i)); } public: /** Return the size of the vector result. * * @throws std::invalid_argument if the expressions do not have the same * size. */ size_t size() const { /* Note: This actually does a check only if * CML_CHECK_VECTOR_EXPR_SIZES is set: */ return CheckedSize(m_left,m_right,size_tag()); } /** Return reference to left expression. */ left_reference left_expression() const { return m_left; } /** Return reference to right expression. */ right_reference right_expression() const { return m_right; } public: /** Construct from the two subexpressions. */ explicit BinaryVectorOp(left_reference left, right_reference right) : m_left(left), m_right(right) {} /** Copy constructor. */ BinaryVectorOp(const expr_type& e) : m_left(e.m_left), m_right(e.m_right) {} protected: left_reference m_left; right_reference m_right; private: /* This ensures that a compile-time size check is executed: */ typename checked_size::check_type _dummy; private: /* Cannot be assigned to: */ expr_type& operator=(const expr_type&); }; /** Expression traits class for BinaryVectorOp<>. */ template struct ExprTraits< BinaryVectorOp > { typedef BinaryVectorOp expr_type; typedef LeftT left_type; typedef RightT right_type; typedef typename expr_type::value_type value_type; typedef typename expr_type::expr_const_reference const_reference; typedef typename expr_type::result_tag result_tag; typedef typename expr_type::size_tag size_tag; typedef typename expr_type::result_type result_type; typedef typename expr_type::assignable_tag assignable_tag; typedef expr_node_tag node_tag; value_type get(const expr_type& v, size_t i) const { return v[i]; } size_t size(const expr_type& e) const { return e.size(); } }; /* Helper struct to verify that both arguments are vector expressions: */ template struct VectorExpressions { /* Require that both arguments are vector expressions: */ typedef typename LeftTraits::result_tag left_result; typedef typename RightTraits::result_tag right_result; enum { is_true = (same_type::is_true && same_type::is_true) }; }; namespace detail { template inline void Resize(VecT&,size_t,RT,MT) {} template inline void Resize(VecT& v, size_t S, resizable_tag, dynamic_memory_tag) { v.resize(S); } template inline void Resize(VecT& v, size_t S) { Resize(v, S, typename VecT::resizing_tag(), typename VecT::memory_tag()); } } // namespace detail } // namespace et } // namespace cml #endif // ------------------------------------------------------------------------- // vim:ft=cpp