/* -*- C++ -*- ------------------------------------------------------------ Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/ The Configurable Math Library (CML) is distributed under the terms of the Boost Software License, v1.0 (see cml/LICENSE for details). *-----------------------------------------------------------------------*/ /** @file * @brief */ #ifndef cml_util_h #define cml_util_h #include // For std::min and std::max. #include // For std::rand. #include #if defined(_MSC_VER) #pragma push_macro("min") #pragma push_macro("max") #undef min #undef max #endif namespace cml { /** Sign of input value as double. */ template < typename T > double sign(T value) { return value < T(0) ? -1.0 : (value > T(0) ? 1.0 : 0.0); } /** Clamp input value to the range [min, max]. */ template < typename T > T clamp(T value, T min, T max) { return std::max(std::min(value, max), min); } /** Test input value for inclusion in [min, max]. */ template < typename T > bool in_range(T value, T min, T max) { return !(value < min) && !(value > max); } /** Map input value from [min1, max1] to [min2, max2]. */ template < typename T > T map_range(T value, T min1, T max1, T min2, T max2) { return min2 + ((value - min1) / (max1 - min1)) * (max2 - min2); } /** Wrap std::acos() and clamp argument to [-1, 1]. */ template < typename T > T acos_safe(T theta) { return T(std::acos(clamp(theta, T(-1.0), T(1.0)))); } /** Wrap std::asin() and clamp argument to [-1, 1]. */ template < typename T > T asin_safe(T theta) { return T(std::asin(clamp(theta, T(-1.0), T(1.0)))); } /** Wrap std::sqrt() and clamp argument to [0, inf). */ template < typename T > T sqrt_safe(T value) { return T(std::sqrt(std::max(value, T(0.0)))); } /** Square a value. */ template < typename T > T sqr(T value) { return value * value; } /** Cube a value. */ template < typename T > T cub(T value) { return value * value * value; } /** Inverse square root. */ template < typename T > T inv_sqrt(T value) { return T(1.0 / std::sqrt(value)); } /* The next few functions deal with indexing. next() and prev() are useful * for operations involving the vertices of a polygon or other cyclic set, * and cyclic_permutation() is used by various functions that deal with * axes or basis vectors in a generic way. As these functions are only * relevant for unsigned integer types, I've just used size_t, but there * may be reasons I haven't thought of that they should be templated. */ /** Return next, with cycling, in a series of N non-negative integers. */ inline size_t next(size_t i, size_t N) { return (i + 1) % N; } /** Return previous, with cycling, in a series of N non-negative integers. */ inline size_t prev(size_t i, size_t N) { return i ? (i - 1) : (N - 1); } /** Cyclic permutation of the set { 0, 1 }, starting with 'first'. */ inline void cyclic_permutation(size_t first, size_t& i, size_t& j) { i = first; j = next(i, 2); } /** Cyclic permutation of the set { 0, 1, 2 }, starting with 'first'. */ inline void cyclic_permutation(size_t first, size_t& i, size_t& j, size_t& k) { i = first; j = next(i, 3); k = next(j, 3); } /** Cyclic permutation of the set { 0, 1, 2, 3 }, starting with 'first'. */ inline void cyclic_permutation( size_t first, size_t& i, size_t& j, size_t& k, size_t& l) { i = first; j = next(i, 4); k = next(j, 4); l = next(k, 4); } /** Convert radians to degrees. */ template < typename T > T deg(T theta) { return theta * constants::deg_per_rad(); } /** Convert degrees to radians. */ template < typename T > T rad(T theta) { return theta * constants::rad_per_deg(); } /* Note: Moving interpolation functions to interpolation.h */ #if 0 /** Linear interpolation of 2 values. * * @note The data points are assumed to be sampled at u = 0 and u = 1, so * for interpolation u must lie between 0 and 1. */ template T lerp(const T& f0, const T& f1, Scalar u) { return (Scalar(1.0) - u) * f0 + u * f1; } #endif #if 0 /** Bilinear interpolation of 4 values. * * @note The data points are assumed to be sampled at the corners of a unit * square, so for interpolation u and v must lie between 0 and 1, */ template T bilerp(const T& f00, const T& f10, const T& f01, const T& f11, Scalar u, Scalar v) { Scalar uv = u * v; return ( (Scalar(1.0) - u - v + uv) * f00 + (u - uv) * f10 + (v - uv) * f01 + uv * f11 ); } #endif #if 0 /** Trilinear interpolation of 8 values. * * @note The data values are assumed to be sampled at the corners of a unit * cube, so for interpolation, u, v, and w must lie between 0 and 1. */ template T trilerp(const T& f000, const T& f100, const T& f010, const T& f110, const T& f001, const T& f101, const T& f011, const T& f111, Scalar u, Scalar v, Scalar w) { Scalar uv = u * v; Scalar vw = v * w; Scalar wu = w * u; Scalar uvw = uv * w; return ( (Scalar(1.0) - u - v - w + uv + vw + wu - uvw) * f000 + (u - uv - wu + uvw) * f100 + (v - uv - vw + uvw) * f010 + (uv - uvw) * f110 + (w - vw - wu + uvw) * f001 + (wu - uvw) * f101 + (vw - uvw) * f011 + uvw * f111 ); } #endif /** Random binary (0,1) value. */ inline size_t random_binary() { return std::rand() % 2; } /** Random polar (-1,1) value. */ inline int random_polar() { return random_binary() ? 1 : -1; } /** Random real in [0,1]. */ inline double random_unit() { return double(std::rand()) / double(RAND_MAX); } /* Random integer in the range [min, max] */ inline long random_integer(long min, long max) { return min + std::rand() % (max - min + 1); } /* Random real number in the range [min, max] */ template < typename T > T random_real(T min, T max) { return min + random_unit() * (max - min); } /** Squared length in R2. */ template < typename T > T length_squared(T x, T y) { return x * x + y * y; } /** Squared length in R3. */ template < typename T > T length_squared(T x, T y, T z) { return x * x + y * y + z * z; } /** Length in R2. */ template < typename T > T length(T x, T y) { return std::sqrt(length_squared(x,y)); } /** Length in R3. */ template < typename T > T length(T x, T y, T z) { return std::sqrt(length_squared(x,y,z)); } /** Index of maximum of 2 values. */ template < typename T > size_t index_of_max(T a, T b) { return a > b ? 0 : 1; } /** Index of maximum of 2 values by magnitude. */ template < typename T > size_t index_of_max_abs(T a, T b) { return index_of_max(std::fabs(a),std::fabs(b)); } /** Index of minimum of 2 values. */ template < typename T > size_t index_of_min(T a, T b) { return a < b ? 0 : 1; } /** Index of minimum of 2 values by magnitude. */ template < typename T > size_t index_of_min_abs(T a, T b) { return index_of_min(std::fabs(a),std::fabs(b)); } /** Index of maximum of 3 values. */ template < typename T > size_t index_of_max(T a, T b, T c) { return a > b ? (c > a ? 2 : 0) : (b > c ? 1 : 2); } /** Index of maximum of 3 values by magnitude. */ template < typename T > size_t index_of_max_abs(T a, T b, T c) { return index_of_max(std::fabs(a),std::fabs(b),std::fabs(c)); } /** Index of minimum of 3 values. */ template < typename T > size_t index_of_min(T a, T b, T c) { return a < b ? (c < a ? 2 : 0) : (b < c ? 1 : 2); } /** Index of minimum of 3 values by magnitude. */ template < typename T > size_t index_of_min_abs(T a, T b, T c) { return index_of_min(std::fabs(a),std::fabs(b),std::fabs(c)); } /** Wrap input value to the range [min,max]. */ template < typename T > T wrap(T value, T min, T max) { max -= min; value = std::fmod(value - min, max); if (value < T(0)) { value += max; } return min + value; } /** Convert horizontal field of view to vertical field of view. */ template < typename T > T xfov_to_yfov(T xfov, T aspect) { return T(2.0 * std::atan(std::tan(xfov * T(.5)) / double(aspect))); } /** Convert vertical field of view to horizontal field of view. */ template < typename T > T yfov_to_xfov(T yfov, T aspect) { return T(2.0 * std::atan(std::tan(yfov * T(.5)) * double(aspect))); } /** Convert horizontal zoom to vertical zoom. */ template < typename T > T xzoom_to_yzoom(T xzoom, T aspect) { return xzoom * aspect; } /** Convert vertical zoom to horizontal zoom. */ template < typename T > T yzoom_to_xzoom(T yzoom, T aspect) { return yzoom / aspect; } /** Convert zoom factor to field of view. */ template < typename T > T zoom_to_fov(T zoom) { return T(2) * T(std::atan(T(1) / zoom)); } /** Convert field of view to zoom factor. */ template < typename T > T fov_to_zoom(T fov) { return T(1) / T(std::tan(fov * T(.5))); } } // namespace cml #if defined(_MSC_VER) #pragma pop_macro("min") #pragma pop_macro("max") #endif #endif // ------------------------------------------------------------------------- // vim:ft=cpp