/******************************************************************************* Copyright (c) 2009, Charles McGarvey All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #include #include #include #include #include #include #include #include #include //#include #include #include #include "Character.hh" #include "Scene.hh" #include "Tilemap.hh" struct Scene::Impl : public Mf::Library { struct Quad : public Mf::Entity { enum SURFACE { NONE = 0, LEFT = 1, RIGHT = 2, TOP = 3 }; Quad(const Mf::Vector3 vertices[4], const std::string& texture, Tilemap::Index tileIndex) : mTilemap(texture), mBlending(false), mFog(false), mSurface(NONE) { for (int i = 0, num = 0; i < 4; ++i) { for (int j = 0; j < 3; ++j, ++num) { mVertices[num] = vertices[i][j]; } } if (!mTilemap.getTileCoords(tileIndex, mTexCoords)) { Mf::logWarning("no index %d in texture %s", tileIndex, texture.c_str()); mTexCoords[0] = mTexCoords[1] = mTexCoords[3] = mTexCoords[6] = 0.0; mTexCoords[2] = mTexCoords[4] = mTexCoords[5] = mTexCoords[7] = 1.0; } mAabb.encloseVertices(vertices, 4); mSphere.point = mAabb.getCenter(); mSphere.radius = (mAabb.min - mSphere.point).length(); } void setBlending(bool blending) { mBlending = blending; } void setFog(bool fog) { mFog = fog; } void setSurface(SURFACE type) { mSurface = type; } SURFACE getSurface() const { return mSurface; } void draw(Mf::Scalar alpha = 0.0) const { if (mBlending) { glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } if (mFog) { glEnable(GL_FOG); glFogi(GL_FOG_MODE, GL_LINEAR); } //glColor4f(1.0f, 1.0f, 1.0f, 1.0f); mTilemap.bind(); glVertexPointer(3, GL_SCALAR, 0, mVertices); glTexCoordPointer(2, GL_SCALAR, 0, mTexCoords); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glDisable(GL_BLEND); glDisable(GL_FOG); } bool isVisible(const Mf::Frustum& frustum) const { return mSphere.isVisible(frustum); } Mf::Scalar mVertices[12]; Mf::Scalar mTexCoords[8]; Tilemap mTilemap; bool mBlending; bool mFog; SURFACE mSurface; }; Mf::Matrix4 mTransform; std::string mTexture; //Mf::Octree::Ptr mOctree; std::list< boost::shared_ptr > mObjects; Mf::Aabb mBounds; enum AXIS { X = 0, Y = 1, Z = 2 }; explicit Impl(const std::string& name) : Mf::Library(name) {} void importSceneBindings(Mf::Script& script) { script.importFunction("SetBounds", boost::bind(&Impl::setBounds, this, _1)); script.importFunction("ResetTransform", boost::bind(&Impl::resetTransform, this, _1)); script.importFunction("Translate", boost::bind(&Impl::translate, this, _1)); script.importFunction("Scale", boost::bind(&Impl::scale, this, _1)); script.importFunction("Rotate", boost::bind(&Impl::rotate, this, _1)); script.importFunction("SetTexture", boost::bind(&Impl::setTexture, this, _1)); script.importFunction("DrawTilemap", boost::bind(&Impl::drawTilemap, this, _1)); script.importFunction("DrawTile", boost::bind(&Impl::drawTile, this, _1)); int detail = 3; Mf::Settings::getInstance().get("detail", detail); script.push(detail); script.set("detail"); script.push(1); script.set("LOW"); script.push(2); script.set("MEDIUM"); script.push(3); script.set("HIGH"); script.push(X); script.set("X"); script.push(Y); script.set("Y"); script.push(Z); script.set("Z"); script.push(Quad::LEFT); script.set("LEFT"); script.push(Quad::RIGHT); script.set("RIGHT"); script.push(Quad::TOP); script.set("TOP"); } Mf::Script::Status load(Mf::Script& script) { std::string filePath = Scene::getPath(getName()); if (filePath == "") return Mf::Script::FILE_ERROR; importSceneBindings(script); return script.doFile(filePath); } static int loadBox(Mf::Script& script, Mf::Aabb& aabb) { Mf::Script::Value table[] = { script[1].requireTable(), script[2].requireTable() }; for (int i = 0; i <= 1; ++i) { for (int j = 1; j <= 3; ++j) { script.push(j); table[i].pushField(); } } script[3].get(aabb.min[0]); script[4].get(aabb.min[1]); script[5].get(aabb.min[2]); script[6].get(aabb.max[0]); script[7].get(aabb.max[1]); script[8].get(aabb.max[2]); return 0; } int setBounds(Mf::Script& script) { int ret = loadBox(script, mBounds); //mOctree = Mf::Octree::alloc(mBounds); return ret; } int resetTransform(Mf::Script& script) { mTransform.identity(); return 0; } int translate(Mf::Script& script) { Mf::Script::Value x = script[1].requireNumber(); Mf::Script::Value y = script[2].requireNumber(); Mf::Script::Value z = script[3].requireNumber(); Mf::Vector3 vec; x.get(vec[0]); y.get(vec[1]); z.get(vec[2]); Mf::Matrix4 translation; cml::matrix_translation(translation, vec); mTransform = translation * mTransform; return 0; } int scale(Mf::Script& script) { if (script.getSize() == 3) { Mf::Vector3 vec; script[1].requireNumber().get(vec[0]); script[2].requireNumber().get(vec[1]); script[3].requireNumber().get(vec[2]); Mf::Matrix4 scaling; cml::matrix_scale(scaling, vec); mTransform = scaling * mTransform; } else if (script.getSize() == 1) { Mf::Scalar value = 1.0; script[1].requireNumber().get(value); Mf::Matrix4 scaling; cml::matrix_uniform_scale(scaling, value); mTransform = scaling * mTransform; } else { script.getTop().throwError("wrong number of arguments"); } return 0; } int rotate(Mf::Script& script) { Mf::Script::Value axis = script[1].requireNumber(); Mf::Script::Value angle = script[2].requireNumber(); size_t index = 0; axis.get(index); Mf::Scalar value; angle.get(value); cml::matrix_rotate_about_world_axis(mTransform, index, cml::rad(value)); return 0; } int setTexture(Mf::Script& script) { script[1].requireString().get(mTexture); return 0; } int drawTilemap(Mf::Script& script) { Mf::Script::Value table = script[1].requireTable(); Mf::Script::Value top = script[-1]; Quad::SURFACE surface; table.pushField("surface"); top.get(surface); script.pop(); int width = 1; int height = 1; table.pushField("width"); top.get(width); script.pop(); int nTiles = 0; //table.pushField("tiles"); Mf::Script::Value tiles = script.getTop(); nTiles = tiles.getLength(); if (nTiles % width != 0) table.throwError("invalid number of tiles"); std::vector< std::vector > indices; int i, w, h; height = nTiles / width; indices.resize(height); // the indices are stored upside-down in the scene file so that they are // easier to edit as text, so we'll need to load them last row first i = 1; for (h = height - 1; h >= 0; --h) { std::vector row; for (w = 0; w < width; ++w, ++i) { script.checkStack(2); script.push(i); tiles.pushField(); Tilemap::Index index; top.get(index); row.push_back(index); } indices[h] = row; } Mf::Vector4 vertices[height+1][width+1]; Mf::Matrix4 transposedTransform = mTransform; transposedTransform.transpose(); for (int h = 0; h <= height; ++h) { for (int w = 0; w <= width; ++w) { vertices[h][w] = Mf::Vector4(w, h, 0.0, 1.0) * transposedTransform; } } for (int h = 0; h < height; ++h) { for (int w = 0; w < width; ++w) { if (indices[h][w] == Tilemap::NO_TILE) continue; Mf::Vector3 demotedVertices[4]; demotedVertices[0] = Mf::demote(vertices[h][w]); demotedVertices[1] = Mf::demote(vertices[h][w+1]); demotedVertices[2] = Mf::demote(vertices[h+1][w+1]); demotedVertices[3] = Mf::demote(vertices[h+1][w]); Quad* quad = new Quad(demotedVertices, mTexture, indices[h][w]); quad->setSurface(surface); boost::shared_ptr quadPtr(quad); //mOctree->insert(quadPtr); mObjects.push_back(quadPtr); } } return 0; } int drawTile(Mf::Script& script) { Mf::Script::Value param = script[1]; Mf::Script::Value top = script[-1]; Tilemap::Index index = 0; int width = 1; bool blending = false; bool fog = false; if (param.isTable()) { script.push(1); param.pushField(); top.get(index); param.pushField("u_scale"); top.get(width); param.pushField("blend"); top.get(blending); param.pushField("fog"); top.get(fog); } else if (param.isNumber()) { param.get(index); } Mf::Vector4 vertices[2][width+1]; Mf::Matrix4 transposedTransform = mTransform; transposedTransform.transpose(); Mf::Scalar xf; Mf::Scalar increment = 1.0 / Mf::Scalar(width); for (int h = 0; h <= 1; ++h) { xf = 0.0; for (int w = 0; w <= width; ++w, xf += increment) { vertices[h][w] = Mf::Vector4(xf, Mf::Scalar(h), 0.0, 1.0) * transposedTransform; } } for (int w = 0; w < width; ++w) { Mf::Vector3 demotedVertices[4]; demotedVertices[0] = Mf::demote(vertices[0][w]); demotedVertices[1] = Mf::demote(vertices[0][w+1]); demotedVertices[2] = Mf::demote(vertices[1][w+1]); demotedVertices[3] = Mf::demote(vertices[1][w]); Quad* quad = new Quad(demotedVertices, mTexture, index); quad->setBlending(blending); quad->setFog(fog); boost::shared_ptr quadPtr(quad); //mOctree->insert(quadPtr); mObjects.push_back(quadPtr); } return 0; } }; Scene::Scene(const std::string& name) : // pass through mImpl(Scene::Impl::getInstance(name)) {} Mf::Script::Status Scene::load(Mf::Script& script) { // pass through return mImpl->load(script); } void Scene::draw(Mf::Scalar alpha) const { //mImpl->mOctree->draw(alpha); std::list< boost::shared_ptr >& objects = mImpl->mObjects; std::list< boost::shared_ptr >::const_iterator it; for (it = objects.begin(); it != objects.end(); ++it) { (*it)->draw(alpha); } mImpl->mBounds.draw(); } void Scene::drawIfVisible(Mf::Scalar alpha, const Mf::Frustum& frustum) const { //mImpl->mOctree->drawIfVisible(alpha, frustum); std::list< boost::shared_ptr >& objects = mImpl->mObjects; std::list< boost::shared_ptr >::const_iterator it; for (it = objects.begin(); it != objects.end(); ++it) { (*it)->drawIfVisible(alpha, frustum); } mImpl->mBounds.draw(); } bool Scene::checkForCollision(Character& character) { return false; //std::list< boost::shared_ptr > objects; //std::list::InsertableP> objects; //mImpl->mOctree->getNearbyObjects(objects, character); std::list< boost::shared_ptr >& objects = mImpl->mObjects; std::list< boost::shared_ptr >::const_iterator it; int collisions = 0; Mf::Sphere sphere = character.getSphere(); for (it = objects.begin(); it != objects.end(); ++it) { Impl::Quad::SURFACE type = (*it)->getSurface(); if (type == Impl::Quad::NONE) continue; if (Mf::checkCollision(sphere, (*it)->getSphere())) { ++collisions; Mf::Vector2 impulse(0.0, 0.0); Mf::Vector2 p = character.getState().momentum; Mf::State2 state = character.getState(1.0); sphere = character.getSphere(); Mf::Scalar alpha = 1.0; while (Mf::checkCollision(sphere, (*it)->getSphere())) { alpha -= 0.05; state = character.getState(alpha); } character.setPosition(state.position); //switch (type) //{ //case Impl::Quad::TOP: //if (p[1] < 0.0) impulse[1] = -p[1]; //break; //case Impl::Quad::LEFT: //if (p[0] > 0.0) impulse[0] = 1.5*-p[0]; //break; //case Impl::Quad::RIGHT: //if (p[0] < 0.0) impulse[0] = 1.5*-p[0]; //break; //} //character.addImpulse(impulse); } } if (collisions > 0) { Mf::logInfo("collisions: %d", collisions); } return false; } std::string Scene::getPath(const std::string& name) { return Mf::Resource::getPath("scenes/" + name + ".lua"); } /** vim: set ts=4 sw=4 tw=80: *************************************************/