/******************************************************************************* Copyright (c) 2009, Charles McGarvey All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #ifndef _MOOF_RIGIDBODY_HH_ #define _MOOF_RIGIDBODY_HH_ #include #include #include #include #include namespace Mf { template struct LinearState { typedef cml::vector< Scalar, cml::fixed > Vector; typedef boost::function ForceFunction; // primary Vector position; Vector momentum; // secondary Vector velocity; // user Vector force; std::vector forces; // constant Scalar mass; Scalar inverseMass; void recalculateLinear() { velocity = momentum * inverseMass; } struct GravityForce { explicit GravityForce(Scalar a = -9.8) { force.zero(); acceleration = a; } const Vector& operator () (const LinearState& state) { force[1] = state.mass * acceleration; return force; } private: Vector force; Scalar acceleration; }; void init() { position.zero(); momentum.zero(); velocity.zero(); force.zero(); forces.clear(); mass = SCALAR(1.0); inverseMass = 1.0 / mass; } struct Derivative { Vector velocity; Vector force; Derivative operator*(Scalar dt) const { Derivative derivative; derivative.velocity = dt * velocity; derivative.force = dt * force; return derivative; } Derivative operator+(const Derivative& other) const { Derivative derivative; derivative.velocity = velocity + other.velocity; derivative.force = force + other.force; return derivative; } }; Vector getForce() const { Vector f(force); for (size_t i = 0; i < forces.size(); ++i) { f += forces[i](*this); } return f; } void getDerivative(Derivative& derivative, Scalar t) const { derivative.velocity = velocity; derivative.force = getForce(); } void step(const Derivative& derivative, Scalar dt) { position += dt * derivative.velocity; momentum += dt * derivative.force; recalculateLinear(); } }; struct RotationalState2 { // primary Scalar orientation; Scalar angularMomentum; // secondary Scalar angularVelocity; // constant Scalar inertia; Scalar inverseInertia; void recalculateRotational() { angularVelocity = angularMomentum * inertia; } struct Derivative { Scalar angularVelocity; Scalar torque; }; void step(const Derivative& derivative, Scalar dt) { orientation += dt * derivative.angularVelocity; angularMomentum += dt * derivative.torque; recalculateRotational(); } }; struct RotationalState3 { // primary Quaternion orientation; Vector3 angularMomentum; // secondary Quaternion spin; Vector3 angularVelocity; // constant Scalar inertia; Scalar inverseInertia; void recalculateRotational() { angularVelocity = angularMomentum * inertia; } }; struct State2 : public LinearState<2>, public RotationalState2 { void recalculate() { recalculateLinear(); recalculateRotational(); } void update(Scalar t, Scalar dt) { rk4,LinearState<2>::Derivative>(*this, t, dt); } }; struct State3 : public LinearState<3>, public RotationalState3 { void recalculate() { recalculateLinear(); recalculateRotational(); } void update(Scalar t, Scalar dt) { rk4,LinearState<3>::Derivative>(*this, t, dt); } }; template inline T interpolate(const T& a, const T& b, Scalar alpha) { return cml::lerp(a, b, alpha); } template <> inline State2 interpolate(const State2& a, const State2& b, Scalar alpha) { State2 state(b); state.position = interpolate(a.position, b.position, alpha); state.momentum = interpolate(a.momentum, b.momentum, alpha); state.orientation = interpolate(a.orientation, b.orientation, alpha); state.angularMomentum = interpolate(a.angularMomentum, b.angularMomentum, alpha); return state; } template <> inline State3 interpolate(const State3& a, const State3& b, Scalar alpha) { State3 state(b); state.position = interpolate(a.position, b.position, alpha); state.momentum = interpolate(a.momentum, b.momentum, alpha); state.orientation = cml::slerp(a.orientation, b.orientation, alpha); state.angularMomentum = interpolate(a.angularMomentum, b.angularMomentum, alpha); return state; } /** * Interface for anything that can move. */ template class RigidBody : public Entity { protected: T mState; T mPrevState; public: virtual ~RigidBody() {} virtual void update(Scalar t, Scalar dt) { mPrevState = mState; mState.update(t, dt); } const T& getState() const { return mState; } T getState(Scalar alpha) const { return interpolate(mPrevState, mState, alpha); } const T& getLastState() const { return mPrevState; } }; typedef RigidBody RigidBody2; typedef RigidBody RigidBody3; } // namespace Mf #endif // _MOOF_RIGIDBODY_HH_ /** vim: set ts=4 sw=4 tw=80: *************************************************/