/******************************************************************************* Copyright (c) 2009, Charles McGarvey All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #ifndef _MOOF_RK4_HH_ #define _MOOF_RK4_HH_ #include #include #include #include namespace Mf { // Generic implementations of a few simple integrators. To use, you need one // type representing the state and another containing the derivatives of the // primary state variables. The state class must implement these methods: // // void getDerivative(Derivative_Type& derivative, Scalar absoluteTime); // void step(const Derivative_Type& derivative, Scalar deltaTime); // // Additionally, the derivative class must overload a few operators: // // Derivative_Type operator+(const Derivative_Type& other) const // Derivative_Type operator*(const Derivative_Type& other) const template inline D evaluate(const S& state, Scalar t) { D derivative; state.getDerivative(derivative, t); return derivative; } template inline D evaluate(S state, Scalar t, Scalar dt, const D& derivative) { state.step(derivative, dt); return evaluate(state, t + dt); } template inline void euler(S& state, Scalar t, Scalar dt) { D a = evaluate(state, t); state.step(a, dt); } template inline void rk2(S& state, Scalar t, Scalar dt) { D a = evaluate(state, t); D b = evaluate(state, t, dt * SCALAR(0.5), a); state.step(b, dt); } template inline void rk4(S& state, Scalar t, Scalar dt) { D a = evaluate(state, t); D b = evaluate(state, t, dt * SCALAR(0.5), a); D c = evaluate(state, t, dt * SCALAR(0.5), b); D d = evaluate(state, t, dt, c); state.step((a + (b + c) * SCALAR(2.0) + d) * SCALAR(1.0/6.0), dt); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ template struct LinearState { typedef cml::vector< Scalar, cml::fixed > Vector; typedef boost::function ForceFunction; // primary Vector position; Vector momentum; // secondary Vector velocity; // user // Vector force; std::vector forces; // constant Scalar mass; Scalar inverseMass; void recalculateLinear() { velocity = momentum * inverseMass; } struct GravityForce { explicit GravityForce(Scalar a = -9.8) { force.zero(); acceleration = a; } const Vector& operator () (const LinearState& state) { force[1] = state.mass * acceleration; return force; } private: Vector force; Scalar acceleration; }; void init() { position.zero(); momentum.zero(); velocity.zero(); force.zero(); forces.clear(); mass = SCALAR(1.0); inverseMass = 1.0 / mass; } struct Derivative { Vector velocity; Vector force; Derivative operator*(Scalar dt) const { Derivative derivative; derivative.velocity = dt * velocity; derivative.force = dt * force; return derivative; } Derivative operator+(const Derivative& other) const { Derivative derivative; derivative.velocity = velocity + other.velocity; derivative.force = force + other.force; return derivative; } }; Vector getForce() const { Vector f(force); for (size_t i = 0; i < forces.size(); ++i) { f += forces[i](*this); } return f; } void getDerivative(Derivative& derivative, Scalar t) const { derivative.velocity = velocity; derivative.force = getForce(); } void step(const Derivative& derivative, Scalar dt) { position += dt * derivative.velocity; momentum += dt * derivative.force; recalculateLinear(); } }; struct RotationalState2 { // primary Scalar orientation; Scalar angularMomentum; // secondary Scalar angularVelocity; // constant Scalar inertia; Scalar inverseInertia; void recalculateRotational() { angularVelocity = angularMomentum * inertia; } struct Derivative { Scalar angularVelocity; Scalar torque; }; void step(const Derivative& derivative, Scalar dt) { orientation += dt * derivative.angularVelocity; angularMomentum += dt * derivative.torque; recalculateRotational(); } }; struct RotationalState3 { // primary Quaternion orientation; Vector3 angularMomentum; // secondary Quaternion spin; Vector3 angularVelocity; // constant Scalar inertia; Scalar inverseInertia; }; struct State2 : public LinearState<2>, public RotationalState2 { void recalculate() { recalculateLinear(); recalculateRotational(); } void integrate(Scalar t, Scalar dt) { rk4,LinearState<2>::Derivative>(*this, t, dt); } }; struct State3 : public LinearState<3>, public RotationalState3 {}; } // namespace Mf #endif // _MOOF_RK4_HH_ /** vim: set ts=4 sw=4 tw=80: *************************************************/