/******************************************************************************* Copyright (c) 2009, Charles McGarvey All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #ifndef _MOOF_MATH_HH_ #define _MOOF_MATH_HH_ /** * @file Math.hh * General math-related types and functions. */ #include #include #include #if HAVE_CONFIG_H #include "config.h" #endif #if USE_DOUBLE_PRECISION typedef GLdouble GLscalar; #define GL_SCALAR GL_DOUBLE #define SCALAR(D) (D) #else typedef GLfloat GLscalar; #define GL_SCALAR GL_FLOAT #define SCALAR(F) (F##f) #endif namespace Mf { typedef GLscalar Scalar; typedef cml::vector< Scalar, cml::fixed<2> > Vector2; typedef cml::vector< Scalar, cml::fixed<3> > Vector3; typedef cml::vector< Scalar, cml::fixed<4> > Vector4; typedef cml::matrix< Scalar, cml::fixed<2,2>, cml::col_basis, cml::col_major > Matrix2; typedef cml::matrix< Scalar, cml::fixed<3,3>, cml::col_basis, cml::col_major > Matrix3; typedef cml::matrix< Scalar, cml::fixed<4,4>, cml::col_basis, cml::col_major > Matrix4; typedef cml::quaternion< Scalar, cml::fixed<>, cml::vector_first, cml::positive_cross > Quaternion; typedef cml::constants Constants; inline Vector3 demote(const Vector4& vec) { return Vector3(vec[0], vec[1], vec[2]); } inline Vector2 demote(const Vector3& vec) { return Vector2(vec[0], vec[1]); } inline Vector4 promote(const Vector3& vec, Scalar extra = 1.0) { return Vector4(vec[0], vec[1], vec[2], extra); } inline Vector3 promote(const Vector2& vec, Scalar extra = 1.0) { return Vector3(vec[0], vec[1], extra); } const Scalar EPSILON = SCALAR(0.000001); /** * Check the equality of scalars with a certain degree of error allowed. */ inline bool isEqual(Scalar a, Scalar b, Scalar epsilon = EPSILON) { return std::abs(a - b) < epsilon; } // Here are some generic implementations of a few simple integrators. To use, // you need one type representing the state and another containing the // derivatives of the primary state variables. The state class must implement // these methods: // // void getDerivative(Derivative_Type& derivative, Scalar absoluteTime); // void step(const Derivative_Type& derivative, Scalar deltaTime); // // Additionally, the derivative class must overload a few operators: // // Derivative_Type operator+(const Derivative_Type& other) const // Derivative_Type operator*(const Derivative_Type& other) const template inline D evaluate(const S& state, Scalar t) { D derivative; state.getDerivative(derivative, t); return derivative; } template inline D evaluate(S state, Scalar t, Scalar dt, const D& derivative) { state.step(derivative, dt); return evaluate(state, t + dt); } template inline void euler(S& state, Scalar t, Scalar dt) { D a = evaluate(state, t); state.step(a, dt); } template inline void rk2(S& state, Scalar t, Scalar dt) { D a = evaluate(state, t); D b = evaluate(state, t, dt * SCALAR(0.5), a); state.step(b, dt); } template inline void rk4(S& state, Scalar t, Scalar dt) { D a = evaluate(state, t); D b = evaluate(state, t, dt * SCALAR(0.5), a); D c = evaluate(state, t, dt * SCALAR(0.5), b); D d = evaluate(state, t, dt, c); state.step((a + (b + c) * SCALAR(2.0) + d) * SCALAR(1.0/6.0), dt); } } // namespace Mf #endif // _MOOF_MATH_HH_ /** vim: set ts=4 sw=4 tw=80: *************************************************/