/******************************************************************************* Copyright (c) 2009, Charles McGarvey All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #ifndef _MOOF_INTERPOLATOR_HH_ #define _MOOF_INTERPOLATOR_HH_ #include #include namespace Mf { // TODO - cleanup these classes class Interpolator { void clamp(Scalar& value) { if (value > 1.0) { switch (mMode) { case STOP: value = 1.0; mDone = true; break; case REPEAT: value -= 1.0; break; case OSCILLATE: value = 2.0 - value; mScale *= -1.0; break; } } else if (value < 0.0) { switch (mMode) { case STOP: value = 0.0; mDone = true; break; case REPEAT: value += 1.0; break; case OSCILLATE: value = -value; mScale *= -1.0; break; } } } public: typedef enum { STOP = 0, REPEAT = 1, OSCILLATE = 2 } Mode; void init(Scalar seconds = 1.0, Mode mode = STOP) { mScale = 1.0 / seconds; mAlpha = 0.0; setMode(mode); } void setMode(Mode mode) { mMode = mode; mDone = false; } void update(Scalar t, Scalar dt) { if (!mDone) { mAlpha += dt * mScale; clamp(mAlpha); calculate(mAlpha); } } bool isDone() const { return mDone; } virtual void calculate(Scalar alpha) = 0; private: Scalar mAlpha; Mode mMode; Scalar mScale; bool mDone; }; template class InterpolatorBase : public Interpolator { public: void init(Scalar seconds = 1.0, Mode mode = STOP) { Interpolator::init(seconds, mode); calculate(0.0); // set value mPrevious = mValue; } void calculate(Scalar alpha) { mPrevious = mValue; calculate(mValue, alpha); } virtual void calculate(T& value, Scalar alpha) = 0; const T& getValue() const { return mValue; } const T getState(Scalar alpha) const { return cml::lerp(mPrevious, mValue, alpha); } private: T mValue; T mPrevious; }; template class PolynomialInterpolator : public InterpolatorBase { public: PolynomialInterpolator() {} PolynomialInterpolator(const T coefficients[D+1], Scalar seconds = 1.0, Interpolator::Mode mode = Interpolator::STOP) { init(coefficients, seconds, mode); } void init(const T coefficients[D+1], Scalar seconds = 1.0, Interpolator::Mode mode = Interpolator::STOP) { Scalar fac[D+1]; fac[0] = 1.0; fac[1] = 1.0; // build an array of the computed factorials we will need for (int i = 2; i <= D; ++i) { fac[i] = i * fac[i - 1]; } // combine the coefficients for fast updating for (int i = 0; i <= D; ++i) { // n! / (k! * (n - k)!) mCoefficients[i] = coefficients[i] * fac[D] / (fac[i] * fac[D - i]); } InterpolatorBase::init(seconds, mode); } void calculate(T& value, Scalar alpha) { Scalar beta = 1.0 - alpha; value = mCoefficients[0] * std::pow(beta, D); for (int i = 1; i <= D; ++i) { value += mCoefficients[i] * std::pow(beta, D - i) * std::pow(alpha, i); } } private: T mCoefficients[D+1]; }; // specialized linear interpolator template class PolynomialInterpolator<1,T> : public InterpolatorBase { public: PolynomialInterpolator() {} PolynomialInterpolator(const T coefficients[2], Scalar seconds = 1.0, Interpolator::Mode mode = Interpolator::STOP) //InterpolatorBase(seconds, mode) { init(coefficients, seconds, mode); } void init(const T coefficients[2], Scalar seconds = 1.0, Interpolator::Mode mode = Interpolator::STOP) { mA = coefficients[0]; mB = coefficients[1]; InterpolatorBase::init(seconds, mode); } void calculate(T& value, Scalar alpha) { value = cml::lerp(mA, mB, alpha); } private: T mA; T mB; }; // Here are some aliases for more common interpolators. Also see the // interpolation functions in cml for other types of interpolation such as // slerp and some multi-alpha interpolators. typedef PolynomialInterpolator<1> Lerp; // linear typedef PolynomialInterpolator<1,Vector2> Lerp2; typedef PolynomialInterpolator<1,Vector3> Lerp3; typedef PolynomialInterpolator<1,Vector4> Lerp4; typedef PolynomialInterpolator<2> Qerp; // quadratic typedef PolynomialInterpolator<2,Vector2> Qerp2; typedef PolynomialInterpolator<2,Vector3> Qerp3; typedef PolynomialInterpolator<2,Vector4> Qerp4; typedef PolynomialInterpolator<3> Cerp; // cubic typedef PolynomialInterpolator<3,Vector2> Cerp2; typedef PolynomialInterpolator<3,Vector3> Cerp3; typedef PolynomialInterpolator<3,Vector4> Cerp4; } // namespace Mf #endif // _MOOF_INTERPOLATOR_HH_ /** vim: set ts=4 sw=4 tw=80: *************************************************/