/******************************************************************************* Copyright (c) 2009, Charles McGarvey All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #ifndef _MOOF_INTERPOLATOR_HH_ #define _MOOF_INTERPOLATOR_HH_ #include namespace Mf { class Interpolator { void clamp(Scalar& value) { if (value > 1.0) { switch (mode_) { case STOP: value = 1.0; stopped_ = true; break; case REPEAT: value -= 1.0; break; case OSCILLATE: value = 2.0 - value; scale_ *= -1.0; break; } } else if (value < 0.0) { switch (mode_) { case STOP: value = 0.0; stopped_ = true; break; case REPEAT: value += 1.0; break; case OSCILLATE: value = -value; scale_ *= -1.0; break; } } } public: typedef enum { STOP = 0, REPEAT = 1, OSCILLATE = 2 } Mode; void init(Scalar seconds = 1.0, Mode mode = STOP) { scale_ = 1.0 / seconds; alpha_ = 0.0; setMode(mode); } void setMode(Mode mode) { mode_ = mode; stopped_ = false; } void update(Scalar dt) { if (!stopped_) { alpha_ += dt * scale_; clamp(alpha_); calculate(alpha_); } } virtual void calculate(Scalar alpha) = 0; private: Scalar alpha_; Mode mode_; Scalar scale_; bool stopped_; }; template class InterpolatorBase : public Interpolator { public: void init(Scalar seconds = 1.0, Mode mode = STOP) { Interpolator::init(seconds, mode); calculate(0.0); // set value previous_ = value_; } void calculate(Scalar alpha) { previous_ = value_; calculate(value_, alpha); } virtual void calculate(T& value, Scalar alpha) = 0; const T& getValue() { return value_; } const T getState(Scalar alpha) { return cml::lerp(previous_, value_, alpha); } private: T value_; T previous_; }; template class BinomialInterpolator : public InterpolatorBase { public: BinomialInterpolator() {} explicit BinomialInterpolator(const T coefficients[D+1], Scalar seconds = 1.0, Interpolator::Mode mode = Interpolator::STOP) { init(coefficients, seconds, mode); } void init(const T coefficients[D+1], Scalar seconds = 1.0, Interpolator::Mode mode = Interpolator::STOP) { Scalar fac[D+1]; fac[0] = 1.0; fac[1] = 1.0; // build an array of the computed factorials we will need for (int i = 2; i <= D; i++) { fac[i] = i * fac[i - 1]; } // combine the coefficients for fast updating for (int i = 0; i <= D; i++) { // n! / (k! * (n - k)!) coefficients_[i] = coefficients[i] * fac[D] / (fac[i] * fac[D - i]); } InterpolatorBase::init(seconds, mode); } void calculate(T& value, Scalar alpha) { Scalar beta = 1.0 - alpha; value = coefficients_[0] * std::pow(beta, D); for (int i = 1; i <= D; i++) { value += coefficients_[i] * std::pow(beta, D - i) * std::pow(alpha, i); } } private: T coefficients_[D+1]; }; template class BinomialInterpolator : public InterpolatorBase { public: BinomialInterpolator() {} explicit BinomialInterpolator(const T coefficients[2], Scalar seconds = 1.0, Interpolator::Mode mode = Interpolator::STOP) //InterpolatorBase(seconds, mode) { init(coefficients, seconds, mode); } void init(const T coefficients[2], Scalar seconds = 1.0, Interpolator::Mode mode = Interpolator::STOP) { a_ = coefficients[0]; b_ = coefficients[1]; InterpolatorBase::init(seconds, mode); } void calculate(T& value, Scalar alpha) { value = cml::lerp(a_, b_, alpha); } private: T a_; T b_; }; // Here are some aliases for more common interpolators. Also see the // interpolation functions in cml for other types of interpolation such as // slerp and some multi-alpha interpolators. typedef BinomialInterpolator Lerps; // linear typedef BinomialInterpolator Lerpv2; typedef BinomialInterpolator Lerpv3; typedef BinomialInterpolator Lerpv4; typedef BinomialInterpolator Qerps; // quadratic typedef BinomialInterpolator Qerpv2; typedef BinomialInterpolator Qerpv3; typedef BinomialInterpolator Qerpv4; typedef BinomialInterpolator Cerps; // cubic typedef BinomialInterpolator Cerpv2; typedef BinomialInterpolator Cerpv3; typedef BinomialInterpolator Cerpv4; } // namespace Mf #endif // _MOOF_INTERPOLATOR_HH_ /** vim: set ts=4 sw=4 tw=80: *************************************************/