/* * CS5600 University of Utah * Charles McGarvey * mcgarvey@eng.utah.edu */ #include #include #include #include #include "list.h" #include "raster.h" struct raster { color_t* pixels; scal_t* zbuf; int w, h; int left, right, bottom, top; mat_t model; mat_t view; mat_t projection; mat_t modelviewprojection; mat_t viewport; bool dirty; #if LIGHTING list_t* lights; color_t ambient; vec_t eye; #endif #if RASTER_STATS unsigned total; unsigned clipped; unsigned culled; #define IF_RASTER_STATS(X) X #else #define IF_RASTER_STATS(X) #endif }; raster_t* raster_alloc(int width, int height, color_t fill) { assert(0 < width && 0 < height && "zero-dimension raster not allowed"); size_t size = width * height; raster_t* p = (raster_t*)mem_alloc(sizeof(raster_t)); p->pixels = (color_t*)mem_alloc(sizeof(color_t) * size); p->w = width; p->h = height; raster_clear(p, fill); raster_viewport(p, 0, 0, width, height); p->model = p->view = p->projection = MAT_IDENTITY; p->dirty = false; #if LIGHTING p->ambient = color_new(S(0.05), S(0.05), S(0.05), S(1.0)); p->lights = NULL; #endif /*= light_new(COLOR_WHITE, vec_new(S(-2.0), S(4.0), S(0.0)));*/ p->zbuf = (scal_t*)mem_alloc(sizeof(scal_t) * size); for (size_t i = 0; i < size; ++i) { p->zbuf[i] = S(1.0); } return p; } void raster_destroy(raster_t* p) { mem_free(p->pixels); mem_free(p->zbuf); mem_free(p); } void raster_printstats(raster_t* p) { #if RASTER_STATS unsigned drawn = p->total - p->clipped - p->culled; float percent = 100.0f * (float)drawn / (float)p->total; printf("culled\t%u\n" "clipped\t%u\n" "drawn\t%u (%6.2f%%)\n" "total\t%u\n", p->culled, p->clipped, drawn, percent, p->total); #endif } void raster_clear(raster_t* p, color_t fill) { size_t size = p->w * p->h; for (int i = 0; i < size; ++i) { p->pixels[i] = fill; } #if RASTER_STATS p->total = 0; p->clipped = 0; p->culled = 0; #endif } void raster_viewport(raster_t* p, int x, int y, int width, int height) { p->left = x; p->right = x + width; p->bottom = y; p->top = y + height; p->viewport = MAT_VIEWPORT(x, y, width, height); } void raster_model(raster_t* p, const mat_t* transform) { p->model = *transform; p->dirty = true; } void raster_view(raster_t* p, const mat_t* transform) { p->view = *transform; p->dirty = true; } void raster_projection(raster_t* p, const mat_t* transform) { p->projection = *transform; p->dirty = true; } void raster_eye(raster_t* p, vec_t eye) { #if LIGHTING p->eye = eye; #endif } void raster_light(raster_t* p, light_t light) { #if LIGHTING light_t* l = (light_t*)mem_alloc(sizeof(light_t)); memcpy(l, &light, sizeof(light_t)); list_push2(&p->lights, l, mem_free); #endif } #define _CHECK_WRITE(X) if ((X) <= 0) goto fail int raster_export_ppm(const raster_t* p, const char* filename) { FILE* file = fopen(filename, "w"); if (file == NULL) { fail: fprintf(stderr, "Cannot write to %s: %s\n", filename, strerror(errno)); return -1; } _CHECK_WRITE(fprintf(file, "P3\n%u %u\n255\n", p->w, p->h)); for (int y = (int)p->h - 1; y >= 0; --y) { for (int x = 0; x < p->w; ++x) { rgbachan_t r, g, b; color_split(p->pixels[y * p->w + x], &r, &g, &b, NULL); _CHECK_WRITE(fprintf(file, "%hhu %hhu %hhu\n", r, g, b)); } } fclose(file); return 0; } int raster_export_bmp(const raster_t* p, const char* filename) { /* * This function was adapted from sample code provided with the assignment * instructions. */ FILE* file = fopen(filename, "wb"); if (file == NULL) { fail: fprintf(stderr, "Cannot write to %s: %s\n", filename, strerror(errno)); return -1; } uint16_t magicNumber = 0x4D42; uint16_t reserved0 = 0;//0x4D41; uint16_t reserved1 = 0;//0x5454; uint32_t dataOffset = 54; uint32_t infoHeaderSize = 40; uint32_t width = p->w; uint32_t height = p->h; uint16_t colorPlanes = 1; uint16_t bitsPerPixel = 32; uint32_t compression = 0; uint32_t dataSize = width * height * bitsPerPixel / 8; uint32_t horizontalResolution = 2835; uint32_t verticalResolution = 2835; uint32_t paletteColorCount = 0; uint32_t importantPaletteColorCount = 0; uint32_t fileSize = 54 + dataSize; /* * Check the return values to avoid loud warnings. */ _CHECK_WRITE(fwrite(&magicNumber, sizeof(magicNumber), 1, file)); _CHECK_WRITE(fwrite(&fileSize, sizeof(fileSize), 1, file)); _CHECK_WRITE(fwrite(&reserved0, sizeof(reserved0), 1, file)); _CHECK_WRITE(fwrite(&reserved1, sizeof(reserved1), 1, file)); _CHECK_WRITE(fwrite(&dataOffset, sizeof(dataOffset), 1, file)); _CHECK_WRITE(fwrite(&infoHeaderSize, sizeof(infoHeaderSize), 1, file)); _CHECK_WRITE(fwrite(&width, sizeof(width), 1, file)); _CHECK_WRITE(fwrite(&height, sizeof(height), 1, file)); _CHECK_WRITE(fwrite(&colorPlanes, sizeof(colorPlanes), 1, file)); _CHECK_WRITE(fwrite(&bitsPerPixel, sizeof(bitsPerPixel), 1, file)); _CHECK_WRITE(fwrite(&compression, sizeof(compression), 1, file)); _CHECK_WRITE(fwrite(&dataSize, sizeof(dataSize), 1, file)); _CHECK_WRITE(fwrite(&horizontalResolution, sizeof(horizontalResolution), 1, file)); _CHECK_WRITE(fwrite(&verticalResolution, sizeof(verticalResolution), 1, file)); _CHECK_WRITE(fwrite(&paletteColorCount, sizeof(paletteColorCount), 1, file)); _CHECK_WRITE(fwrite(&importantPaletteColorCount, sizeof(importantPaletteColorCount), 1, file)); size_t size = width * height; for (int i = 0; i < size; ++i) { rgbachan_t a, r, g, b; color_split(p->pixels[i], &r, &g, &b, &a); uint32_t argb = PACK(argb, 3, a); argb = PACK(argb, 2, r); argb = PACK(argb, 1, g); argb = PACK(argb, 0, b); _CHECK_WRITE(fwrite(&argb, sizeof(argb), 1, file)); } fclose(file); return 0; } #undef _CHECK_WRITE /* * See if the triangle is at all visible in the viewport. Also, minimize the * rectangle around the area that includes the triangle. */ INLINE_MAYBE bool _try_clip(tri_t t, int* left, int* right, int* bottom, int* top) { #if CLIPPING aabb_t box = tri_aabb(t); if (box.min.z < S(-1.0) || S(1.0) < box.max.z) { return false; } *left = imax((int)scal_floor(box.min.x), *left); *right = imin((int)scal_ceil(box.max.x), *right); if (*right <= *left) { return false; } *bottom = imax((int)scal_floor(box.min.y), *bottom); *top = imin((int)scal_ceil(box.max.y), *top); if (*top <= *bottom) { return false; } #endif // CLIPPING return true; } /* * See whether or not we need to draw based on the orientation of the * triangle. */ INLINE_MAYBE bool _try_cull_backface(tri_t t) { #if BACKFACE_CULLING vec_t n = tri_normal(t); if (n.z < S(0.0)) { return false; } #endif return true; } /* * Determine what color is associated with the given vertex. */ INLINE_MAYBE color_t _get_vertex_color(raster_t* p, vert_t vert) { #if LIGHTING color_t color = COLOR_BLACK; for (list_t* i = p->lights; i; i = i->link) { light_t light = *(light_t*)i->val; vec_t mpos = vert.v; vec_t lpos = light.position; vec_t vpos = p->eye; vec_t n = vert.n; vec_t l = vec_normalize(vec_sub(lpos, mpos)); vec_t r = vec_sub(vec_scale(n, S(2.0) * vec_dot(n, l)), l); vec_t v = vec_normalize(vec_sub(vpos, mpos)); scal_t kd = scal_max(vec_dot(l, n), S(0.0)); color_t Id = color_new( light.color.r * vert.c.r * kd, light.color.g * vert.c.g * kd, light.color.b * vert.c.b * kd, S(1.0) ); scal_t ks = scal_pow(scal_max(vec_dot(r, v), S(0.0)), S(64.0)); color_t Is = color_new( light.color.r * COLOR_WHITE.r * ks, light.color.g * COLOR_WHITE.g * ks, light.color.b * COLOR_WHITE.b * ks, S(1.0) ); color = color_add2(color, Id, Is); } color_t Ia = p->ambient; return color_clamp(color_add(color, Ia)); #else return vert.c; #endif // LIGHTING } void raster_draw_tri(raster_t* p, const tri_t* triangle) { IF_RASTER_STATS(++p->total); tri_t t = *triangle; // need to recalculate the model-view-projection matrix if any one of its // composing matrices have been changed if (p->dirty) { p->modelviewprojection = mat_mult(p->view, p->model); p->modelviewprojection = mat_mult(p->projection, p->modelviewprojection); p->dirty = false; } t = tri_transform(t, p->modelviewprojection); t = tri_homodiv(t); if (!_try_cull_backface(t)) { IF_RASTER_STATS(++p->culled); return; } t = tri_transform(t, p->viewport); int left = p->left; int right = p->right; int bottom = p->bottom; int top = p->top; if (!_try_clip(t, &left, &right, &bottom, &top)) { IF_RASTER_STATS(++p->clipped); return; } tri_t temp = tri_transform(*triangle, p->model); #if LIGHTING && (!FIND_NORMALS || (!SMOOTH_COLOR && FIND_NORMALS == 2)) temp.a.n = temp.b.n = temp.c.n = vec_normalize(tri_normal(temp)); #endif #if !SMOOTH_COLOR temp.a.c = tri_color(temp); #endif color_t color1 = _get_vertex_color(p, temp.a); #if SMOOTH_COLOR color_t color2 = _get_vertex_color(p, temp.b); color_t color3 = _get_vertex_color(p, temp.c); #endif for (int y = bottom; y < top; ++y) { for (int x = left; x < right; ++x) { vec_t v = vec_new((scal_t)x, (scal_t)y, S(0.0)); scal_t b[3]; if (tri_barycentric(t, b, v)) { #if DEPTH_TEST v.z = tri_z(t, b); scal_t* n = p->zbuf + y * p->w + x; if (S(-1.0) < v.z && v.z < *n) { #endif color_t* c = p->pixels + y * p->w + x; #if SMOOTH_COLOR *c = color_interp2(color1, color2, color3, b); #else *c = color1; #endif #if DEPTH_TEST *n = v.z; } #endif } } } }